F01VFF (ZTRTTF) (PDF version)
F01 Chapter Contents
F01 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF01VFF (ZTRTTF)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F01VFF (ZTRTTF) copies a complex triangular matrix stored full format in a two-dimensional array to Rectangular Full Packed (RFP) format. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

## 2  Specification

 SUBROUTINE F01VFF ( TRANSR, UPLO, N, A, LDA, ARF, INFO)
 INTEGER N, LDA, INFO COMPLEX (KIND=nag_wp) A(LDA,*), ARF(N*(N+1)/2) CHARACTER(1) TRANSR, UPLO
The routine may be called by its LAPACK name ztrttf.

## 3  Description

F01VFF (ZTRTTF) packs a complex $n$ by $n$ triangular matrix $A$, stored conventionally in a two-dimensional array into RFP format. This routine is intended for possible use in conjunction with routines from Chapters F06 and F07 where some routines that use triangular matrices store them in RFP format.
None.

## 5  Parameters

1:     TRANSR – CHARACTER(1)Input
On entry: specifies whether the normal RFP representation of $A$ or its conjugate transpose is stored.
${\mathbf{TRANSR}}=\text{'N'}$
The matrix $A$ is stored in normal RFP format.
${\mathbf{TRANSR}}=\text{'C'}$
The conjugate transpose of the RFP representation of the matrix $A$ is stored.
Constraint: ${\mathbf{TRANSR}}=\text{'N'}$ or $\text{'C'}$.
2:     UPLO – CHARACTER(1)Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{UPLO}}=\text{'U'}$
$A$ is upper triangular.
${\mathbf{UPLO}}=\text{'L'}$
$A$ is lower triangular.
Constraint: ${\mathbf{UPLO}}=\text{'U'}$ or $\text{'L'}$.
3:     N – INTEGERInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{N}}\ge 0$.
4:     A(LDA,$*$) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array A must be at least ${\mathbf{N}}$.
On entry: the triangular matrix $A$.
• If ${\mathbf{UPLO}}=\text{'U'}$, $A$ is upper triangular and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{UPLO}}=\text{'L'}$, $A$ is lower triangular and the elements of the array above the diagonal are not referenced.
5:     LDA – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F01VFF (ZTRTTF) is called.
Constraint: ${\mathbf{LDA}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
6:     ARF(${\mathbf{N}}×\left({\mathbf{N}}+1\right)/2$) – COMPLEX (KIND=nag_wp) arrayOutput
On exit: the triangular matrix $A$ in RFP format, as described in Section 3.3.3 in the F07 Chapter Introduction.
7:     INFO – INTEGEROutput
On exit: ${\mathbf{INFO}}=0$ unless the routine detects an error (see Section 6).

## 6  Error Indicators and Warnings

Errors or warnings detected by the routine:
${\mathbf{INFO}}<0$
If ${\mathbf{INFO}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

Not applicable.

None.

## 9  Example

This example reads in a triangular matrix and copies it to RFP format.

### 9.1  Program Text

Program Text (f01vffe.f90)

### 9.2  Program Data

Program Data (f01vffe.d)

### 9.3  Program Results

Program Results (f01vffe.r)

F01VFF (ZTRTTF) (PDF version)
F01 Chapter Contents
F01 Chapter Introduction
NAG Library Manual