NAG Toolbox

nag_specfun_beta_incomplete (s14cc)

1 Purpose
nag_specfun_beta_incomplete (s14cc) computes values for the incomplete beta function $I_x(a, b)$ and its complement $1 - I_x(a, b)$.

2 Syntax

```matlab
[w, w1, ifail] = nag_specfun_beta_incomplete(a, b, x)
[w, w1, ifail] = s14cc(a, b, x)
```

3 Description
nag_specfun_beta_incomplete (s14cc) evaluates the incomplete beta function and its complement in the normalized form

$$I_x(a, b) = \frac{1}{B(a, b)} \int_0^x t^{a-1} (1 - t)^{b-1} dt$$

$$1 - I_x(a, b) = I_y(b, a), \text{ where } y = 1 - x,$$

with

- $0 \leq x \leq 1$,
- $a \geq 0$ and $b \geq 0$,

and the beta function $B(a, b)$ is defined as $B(a, b) = \int_0^1 t^{a-1} (1 - t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ where $\Gamma(y)$ is the gamma function.

Several methods are used to evaluate the functions depending on the arguments a, b and x. The methods include Wise’s asymptotic expansion (see Wise (1950)) when $a > b$, continued fraction derived by DiDonato and Morris (1992) when $a, b > 1$, and power series when $b \leq 1$ or $b \times x \leq 0.7$. When both a and b are large, specifically $a, b \geq 15$, the DiDonato and Morris (1992) asymptotic expansion is employed for greater efficiency.

Once either $I_x(a, b)$ or $I_y(b, a)$ is computed, the other is obtained by subtraction from 1. In order to avoid loss of relative precision in this subtraction, the smaller of $I_x(a, b)$ and $I_y(b, a)$ is computed first. nag_specfun_beta_incomplete (s14cc) is derived from BRATIO in DiDonato and Morris (1992).

4 References

Wise M E (1950) The incomplete beta function as a contour integral and a quickly converging series for its inverse Biometrika 37 208–218
5 Parameters

5.1 Compulsory Input Parameters

1: a – REAL (KIND=nag_wp)
 The argument a of the function.
 Constraint: $a \geq 0.0$.

2: b – REAL (KIND=nag_wp)
 The argument b of the function.
 Constraints:
 - $b \geq 0.0$;
 - either $b \neq 0.0$ or $a \neq 0.0$.

3: x – REAL (KIND=nag_wp)
 x, upper limit of integration.
 Constraints:
 - $0.0 \leq x \leq 1.0$;
 - either $x \neq 0.0$ or $a \neq 0.0$;
 - either $1 - x \neq 0.0$ or $b \neq 0.0$.

5.2 Optional Input Parameters

None.

5.3 Output Parameters

1: w – REAL (KIND=nag_wp)
 The value of the incomplete beta function $I_x(a, b)$ evaluated from zero to x.

2: $w1$ – REAL (KIND=nag_wp)
 The value of the complement of the incomplete beta function $1 - I_x(a, b)$, i.e., the incomplete beta function evaluated from x to one.

3: ifail – INTEGER
 $\text{ifail} = 0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$\text{ifail} = 1$
 Constraint: $a \geq 0.0$.
 Constraint: $b \geq 0.0$.

$\text{ifail} = 2$
 On entry, a and b were zero.
 Constraint: a or b must be nonzero.

$\text{ifail} = 3$
 Constraint: $0.0 \leq x \leq 1.0$.
ifail = 4
 On entry, x and a were zero.
 Constraint: x or a must be nonzero.

ifail = 5
 On entry, 1.0 - x and b were zero.
 Constraint: 1.0 - x or b must be nonzero.

ifail = -99
 An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399
 Your licence key may have expired or may not have been installed correctly.

ifail = -999
 Dynamic memory allocation failed.

7 Accuracy

nag_specfun_beta_incomplete (s14cc) is designed to maintain relative accuracy for all arguments. For very tiny results (of the order of machine precision or less) some relative accuracy may be lost – loss of three or four decimal places has been observed in experiments. For other arguments full relative accuracy may be expected.

8 Further Comments

None.

9 Example

This example reads values of the arguments a and b from a file, evaluates the function and its complement for 10 different values of x and prints the results.

9.1 Program Text

 function s14cc_example

 fprintf('s14cc example results

 a = 5.3;
b = 10.1;
 fprintf('
 a b x Ix(a,b) 1-Ix(a,b)
 for x = 0.01:0.01:0.1
 [w, w1, ifail] = s14cc(a, b, x);
 fprintf('%6.2f%6.2f%6.2f%17.4e%17.4e
 end

9.2 Program Results

 s14cc example results

 a b x Ix(a,b) 1-Ix(a,b)
 5.30 10.10 0.01 6.4755e-08 1.0000e+00
 5.30 10.10 0.02 2.3613e-06 1.0000e+00
 5.30 10.10 0.03 1.8734e-05 9.9976e-01
 5.30 10.10 0.04 7.9575e-05 9.9992e-01
 5.30 10.10 0.05 2.3997e-04 9.9976e-01

Mark 25

S – Approximations of Special Functions

s14cc
<table>
<thead>
<tr>
<th>5.30</th>
<th>10.10</th>
<th>0.06</th>
<th>5.8255e-04</th>
<th>9.9942e-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.07</td>
<td>1.2174e-03</td>
<td>9.9878e-01</td>
</tr>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.08</td>
<td>2.2797e-03</td>
<td>9.9772e-01</td>
</tr>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.09</td>
<td>3.9249e-03</td>
<td>9.9608e-01</td>
</tr>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.10</td>
<td>6.3236e-03</td>
<td>9.9368e-01</td>
</tr>
</tbody>
</table>