NAG Toolbox

nag univar outlier peirce 1var (g07ga)

1 Purpose

nag univar outlier peirce 1var (g07ga) identifies outlying values using Peirce's criterion.

2 Syntax

```
[iout, niout, diff, llamb, ifail] = nag_univar_outlier_peirce_lvar(p, y, ldiff,
'n', n, 'mean', mean, 'var', var)
[iout, niout, diff, llamb, ifail] = g07ga(p, y, ldiff, 'n', n, 'mean', mean,
'var', var)
```

3 Description

nag univar outlier peirce 1var (g07ga) flags outlying values in data using Peirce's criterion. Let

y denote a vector of n observations (for example the residuals) obtained from a model with p parameters,

m denote the number of potential outlying values,

 μ and σ^2 denote the mean and variance of y respectively,

 \tilde{y} denote a vector of length n-m constructed by dropping the m values from y with the largest value of $|y_i - \mu|$,

 $\tilde{\sigma}^2$ denote the (unknown) variance of \tilde{y} ,

 λ denote the ratio of $\tilde{\sigma}$ and σ with $\lambda = \frac{\tilde{\sigma}}{\sigma}$.

Peirce's method flags y_i as a potential outlier if $|y_i - \mu| \ge x$, where $x = \sigma^2 z$ and z is obtained from the solution of

$$R^{m} = \lambda^{m-n} \frac{m^{m} (n-m)^{n-m}}{n^{n}} \tag{1}$$

where

$$R = 2 \exp\left(\left(\frac{z^2 - 1}{2}\right)(1 - \Phi(z))\right) \tag{2}$$

and Φ is the cumulative distribution function for the standard Normal distribution.

As $\tilde{\sigma}^2$ is unknown an assumption is made that the relationship between $\tilde{\sigma}^2$ and σ^2 , hence λ , depends only on the sum of squares of the rejected observations and the ratio estimated as

$$\lambda^2 = \frac{n - p - mz^2}{n - p - m}$$

which gives

$$z^{2} = 1 + \frac{n - p - m}{m} (1 - \lambda^{2}) \tag{3}$$

A value for the cutoff x is calculated iteratively. An initial value of R=0.2 is used and a value of λ is estimated using equation (1). Equation (3) is then used to obtain an estimate of z and then equation (2) is used to get a new estimate for R. This process is then repeated until the relative change in z between consecutive iterations is $\leq \sqrt{\epsilon}$, where ϵ is **machine precision**.

Mark 25 g07ga.1

By construction, the cutoff for testing for m+1 potential outliers is less than the cutoff for testing for m potential outliers. Therefore Peirce's criterion is used in sequence with the existence of a single potential outlier being investigated first. If one is found, the existence of two potential outliers is investigated etc.

If one of a duplicate series of observations is flagged as an outlier, then all of them are flagged as outliers.

4 References

Gould B A (1855) On Peirce's criterion for the rejection of doubtful observations, with tables for facilitating its application *The Astronomical Journal* **45**

Peirce B (1852) Criterion for the rejection of doubtful observations The Astronomical Journal 45

5 Parameters

5.1 Compulsory Input Parameters

1: **p** – INTEGER

p, the number of parameters in the model used in obtaining the y. If y is an observed set of values, as opposed to the residuals from fitting a model with p parameters, then p should be set to 1, i.e., as if a model just containing the mean had been used.

Constraint: $1 \le \mathbf{p} \le \mathbf{n} - 2$.

2: $y(n) - REAL (KIND=nag_wp) array$

y, the data being tested.

3: **ldiff** – INTEGER

The maximum number of values to be returned in arrays diff and llamb.

If **ldiff** < 0, arrays **diff** and **llamb** are not referenced.

5.2 Optional Input Parameters

1: **n** – INTEGER

Default: the dimension of the array y.

n, the number of observations.

Constraint: $\mathbf{n} \geq 3$.

2: **mean_p** - REAL (KIND=nag_wp)

Default: 0.0

If var > 0.0, mean must contain μ , the mean of y, otherwise mean is not referenced and the mean is calculated from the data supplied in y.

3: **var** – REAL (KIND=nag_wp)

Default: 0.0

If $\mathbf{var} > 0.0$, \mathbf{var} must contain σ^2 , the variance of y, otherwise the variance is calculated from the data supplied in \mathbf{y} .

g07ga.2 Mark 25

5.3 Output Parameters

1: iout(n) - INTEGER array

The indices of the values in \mathbf{y} sorted in descending order of the absolute difference from the mean, therefore $|\mathbf{y}(\mathbf{iout}(i-1)) - \mu| \ge |\mathbf{y}(\mathbf{iout}(i)) - \mu|$, for $i = 2, 3, \dots, \mathbf{n}$.

2: **niout** – INTEGER

The number of potential outliers. The indices for these potential outliers are held in the first **niout** elements of **iout**. By construction there can be at most $\mathbf{n} - \mathbf{p} - 1$ values flagged as outliers.

3: **dif(ldiff)** – REAL (KIND=nag_wp) array

diff(i) holds
$$|y - \mu| - \sigma^2 z$$
 for observation $\mathbf{y}(\mathbf{iout}(i))$, for $i = 1, 2, ..., \min(\mathbf{ldiff}, \mathbf{niout} + 1, \mathbf{n} - \mathbf{p} - 1)$.

4: **llamb**(**ldiff**) – REAL (KIND=nag_wp) array

$$\mathbf{llamb}(i)$$
 holds $\log(\lambda^2)$ for observation $\mathbf{y}(\mathbf{iout}(i))$, for $i=1,2,\ldots,\min(\mathbf{ldiff},\mathbf{niout}+1,\mathbf{n}-\mathbf{p}-1)$.

5: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

Constraint: $n \ge 3$.

ifail = 2

Constraint: $1 \le \mathbf{p} \le \mathbf{n} - 2$.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

One problem with Peirce's algorithm as implemented in nag_univar_outlier_peirce_1var (g07ga) is the assumed relationship between σ^2 , the variance using the full dataset, and $\tilde{\sigma}^2$, the variance with the potential outliers removed. In some cases, for example if the data y were the residuals from a linear regression, this assumption may not hold as the regression line may change significantly when outlying values have been dropped resulting in a radically different set of residuals. In such cases nag univar_outlier_peirce_2var (g07gb) should be used instead.

Mark 25 g07ga.3

9 Example

This example reads in a series of data and flags any potential outliers.

The dataset used is from Peirce's original paper and consists of fifteen observations on the vertical semidiameter of Venus.

9.1 Program Text

```
function g07ga_example
fprintf('g07ga example results\n\n');
y = [-0.30; 0.48; 0.63; -0.22; 0.18; -0.44; -0.24; -0.13; -0.05; 0.39; 1.01; 0.06; -1.40; 0.20; 0.10];
      = nag_int(2);
ldiff = nag_int(1);
% Get a list of potential outliers
[iout, niout, dif, llamb, ifail] = ...
  g07ga(p, y, ldiff);
% Display results
fprintf('Number of potential outliers: %2d\n', niout);
fprintf(' No. Index
                            Value');
if ldiff > 0
                    Diff
  fprintf('
                             ln(lambda^2)');
end
fprintf('\n');
for i=1:niout
  fprintf(' %4d %4d %10.2f', i, iout(i), y(iout(i)));
  if i <= ldiff
    fprintf(' %10.2f %10.2f', dif(i), llamb(i));
  fprintf('\n');
end
```

9.2 Program Results

```
g07ga example results

Number of potential outliers: 2

No. Index Value Diff ln(lambda^2)

1 13 -1.40 0.31 -0.30
2 11 1.01
```

g07ga.4 (last) Mark 25