Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_specfun_bessel_k0_scaled (s18cc)

## Purpose

nag_specfun_bessel_k0_scaled (s18cc) returns a value of the scaled modified Bessel function ${e}^{x}{K}_{0}\left(x\right)$ via the function name.

## Syntax

[result, ifail] = s18cc(x)
[result, ifail] = nag_specfun_bessel_k0_scaled(x)

## Description

nag_specfun_bessel_k0_scaled (s18cc) evaluates an approximation to ${e}^{x}{K}_{0}\left(x\right)$, where ${K}_{0}$ is a modified Bessel function of the second kind. The scaling factor ${e}^{x}$ removes most of the variation in ${K}_{0}\left(x\right)$.
The function uses the same Chebyshev expansions as nag_specfun_bessel_k0_real (s18ac), which returns the unscaled value of ${K}_{0}\left(x\right)$.

## References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{x}$ – double scalar
The argument $x$ of the function.
Constraint: ${\mathbf{x}}>0.0$.

None.

### Output Parameters

1:     $\mathrm{result}$ – double scalar
The result of the function.
2:     $\mathrm{ifail}$int64int32nag_int scalar
${\mathbf{ifail}}={\mathbf{0}}$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

Errors or warnings detected by the function:
${\mathbf{ifail}}=1$
On entry, ${\mathbf{x}}\le 0.0$, ${K}_{0}$ is undefined.
On soft failure, nag_specfun_bessel_k0_scaled (s18cc) returns zero.
${\mathbf{ifail}}=-99$
${\mathbf{ifail}}=-399$
Your licence key may have expired or may not have been installed correctly.
${\mathbf{ifail}}=-999$
Dynamic memory allocation failed.

## Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the accuracy of the argument is essentially limited by the machine precision, the accuracy of the function value will be similarly limited by at most a small multiple of the machine precision.

None.

## Example

This example reads values of the argument $x$ from a file, evaluates the function at each value of $x$ and prints the results.
```function s18cc_example

fprintf('s18cc example results\n\n');

x = [0.4  0.6  1.4  2.5  10  1000];
n = size(x,2);
result = x;

for j=1:n
[result(j), ifail] = s18cc(x(j));
end

disp('      x        e^xK_0(x)');
fprintf('%12.3e%12.3e\n',[x; result]);

```
```s18cc example results

x        e^xK_0(x)
4.000e-01   1.663e+00
6.000e-01   1.417e+00
1.400e+00   9.881e-01
2.500e+00   7.595e-01
1.000e+01   3.916e-01
1.000e+03   3.963e-02
```