hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_erfcx_real (s15ag)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_erfcx_real (s15ag) returns the value of the scaled complementary error function erfcxx, via the function name.

Syntax

[result, ifail] = s15ag(x)
[result, ifail] = nag_specfun_erfcx_real(x)

Description

nag_specfun_erfcx_real (s15ag) calculates an approximate value for the scaled complementary error function
erfcxx = e x2 erfcx = 2 π e x2 x e-t2 dt = e x2 1- erfx .  
Let x^ be the root of the equation erfcx-erfx=0 (then x^0.46875). For xx^ the value of erfcxx is based on the following rational Chebyshev expansion for erfx:
erfxxR,mx2,  
where R,m denotes a rational function of degree  in the numerator and m in the denominator.
For x>x^ the value of erfcxx is based on a rational Chebyshev expansion for erfcx: for x^<x4 the value is based on the expansion
erfcxex2R,mx;  
and for x>4 it is based on the expansion
erfcxex2x1π+1x2R,m1/x2.  
For each expansion, the specific values of  and m are selected to be minimal such that the maximum relative error in the expansion is of the order 10-d, where d is the maximum number of decimal digits that can be accurately represented for the particular implementation (see nag_machine_decimal_digits (x02be)).
Asymptotically, erfcxx1/πx. There is a danger of setting underflow in erfcxx whenever xxhi=minxhuge,1/πxtiny, where xhuge is the largest positive model number (see nag_machine_real_largest (x02al)) and xtiny is the smallest positive model number (see nag_machine_real_smallest (x02ak)). In this case nag_specfun_erfcx_real (s15ag) exits with ifail=1 and returns erfcxx=0. For x in the range 1/2εx<xhi, where ε is the machine precision, the asymptotic value 1/πx is returned for erfcxx and nag_specfun_erfcx_real (s15ag) exits with ifail=2.
There is a danger of setting overflow in ex2 whenever x<xneg=-logxhuge/2. In this case nag_specfun_erfcx_real (s15ag) exits with ifail=3 and returns erfcxx=xhuge.
The values of xhi, 1/2ε and xneg are given in the Users' Note for your implementation.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications
Cody W J (1969) Rational Chebyshev approximations for the error function Math.Comp. 23 631–637

Parameters

Compulsory Input Parameters

1:     x – double scalar
The argument x of the function.

Optional Input Parameters

None.

Output Parameters

1:     result – double scalar
The result of the function.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Note: nag_specfun_erfcx_real (s15ag) may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W  ifail=1
Constraint: x<xhi.
W  ifail=2
On entry, x was in the interval _,_ where erfcxx is approximately 1/π*x: .
W  ifail=3
Constraint: xxneg.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The relative error in computing erfcxx may be estimated by evaluating
E= erfcxx - ex2 n=1 Inerfcx erfcxx ,  
where In denotes repeated integration. Empirical results suggest that on the interval x^,2 the loss in base b significant digits for maximum relative error is around 3.3, while for root-mean-square relative error on that interval it is 1.2 (see nag_machine_model_base (x02bh) for the definition of the model parameter b). On the interval 2,20 the values are around 3.5 for maximum and 0.45 for root-mean-square relative errors; note that on these two intervals erfcx is the primary computation. See also Accuracy in nag_specfun_erfc_real (s15ad).

Further Comments

None.

Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.
function s15ag_example


fprintf('s15ag example results\n\n');

x = [-30.0; -6.0; -4.5; -1.0; 1.0; 4.5; 6.0; 7.0e7];

% Catch non-zero ifails
wstat = warning();
warning('OFF');

result = zeros(8, 1);
ifail  = zeros(8, 1, 'int64');
for i=1:8
  [result(i), ifail(i)] = s15ag(x(i));
end
fprintf('       x       erfcx(x)    ifail\n');
for i=1:8
  fprintf('%10.2e %13.5e     %d\n', x(i), result(i), ifail(i));
end

warning(wstat);


s15ag example results

       x       erfcx(x)    ifail
 -3.00e+01  1.79769e+308     3
 -6.00e+00   8.62246e+15     0
 -4.50e+00   1.24593e+09     0
 -1.00e+00   5.00898e+00     0
  1.00e+00   4.27584e-01     0
  4.50e+00   1.22485e-01     0
  6.00e+00   9.27766e-02     0
  7.00e+07   8.05985e-09     2

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015