Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_dgttrs (f07ce)

## Purpose

nag_lapack_dgttrs (f07ce) computes the solution to a real system of linear equations $AX=B$ or ${A}^{\mathrm{T}}X=B$, where $A$ is an $n$ by $n$ tridiagonal matrix and $X$ and $B$ are $n$ by $r$ matrices, using the $LU$ factorization returned by nag_lapack_dgttrf (f07cd).

## Syntax

[b, info] = f07ce(trans, dl, d, du, du2, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_dgttrs(trans, dl, d, du, du2, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)

## Description

nag_lapack_dgttrs (f07ce) should be preceded by a call to nag_lapack_dgttrf (f07cd), which uses Gaussian elimination with partial pivoting and row interchanges to factorize the matrix $A$ as
 $A=PLU ,$
where $P$ is a permutation matrix, $L$ is unit lower triangular with at most one nonzero subdiagonal element in each column, and $U$ is an upper triangular band matrix, with two superdiagonals. nag_lapack_dgttrs (f07ce) then utilizes the factorization to solve the required equations.

## References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{trans}$ – string (length ≥ 1)
Specifies the equations to be solved as follows:
${\mathbf{trans}}=\text{'N'}$
Solve $AX=B$ for $X$.
${\mathbf{trans}}=\text{'T'}$ or $\text{'C'}$
Solve ${A}^{\mathrm{T}}X=B$ for $X$.
Constraint: ${\mathbf{trans}}=\text{'N'}$, $\text{'T'}$ or $\text{'C'}$.
2:     $\mathrm{dl}\left(:\right)$ – double array
The dimension of the array dl must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$
Must contain the $\left(n-1\right)$ multipliers that define the matrix $L$ of the $LU$ factorization of $A$.
3:     $\mathrm{d}\left(:\right)$ – double array
The dimension of the array d must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
Must contain the $n$ diagonal elements of the upper triangular matrix $U$ from the $LU$ factorization of $A$.
4:     $\mathrm{du}\left(:\right)$ – double array
The dimension of the array du must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$
Must contain the $\left(n-1\right)$ elements of the first superdiagonal of $U$.
5:     $\mathrm{du2}\left(:\right)$ – double array
The dimension of the array du2 must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-2\right)$
Must contain the $\left(n-2\right)$ elements of the second superdiagonal of $U$.
6:     $\mathrm{ipiv}\left(:\right)$int64int32nag_int array
The dimension of the array ipiv must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
Must contain the $n$ pivot indices that define the permutation matrix $P$. At the $i$th step, row $i$ of the matrix was interchanged with row ${\mathbf{ipiv}}\left(i\right)$, and ${\mathbf{ipiv}}\left(i\right)$ must always be either $i$ or $\left(i+1\right)$, ${\mathbf{ipiv}}\left(i\right)=i$ indicating that a row interchange was not performed.
7:     $\mathrm{b}\left(\mathit{ldb},:\right)$ – double array
The first dimension of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The second dimension of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs_p}}\right)$.
The $n$ by $r$ matrix of right-hand sides $B$.

### Optional Input Parameters

1:     $\mathrm{n}$int64int32nag_int scalar
Default: the first dimension of the array b and the dimension of the arrays d, ipiv.
$n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
2:     $\mathrm{nrhs_p}$int64int32nag_int scalar
Default: the second dimension of the array b.
$r$, the number of right-hand sides, i.e., the number of columns of the matrix $B$.
Constraint: ${\mathbf{nrhs_p}}\ge 0$.

### Output Parameters

1:     $\mathrm{b}\left(\mathit{ldb},:\right)$ – double array
The first dimension of the array b will be $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The second dimension of the array b will be $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs_p}}\right)$.
The $n$ by $r$ solution matrix $X$.
2:     $\mathrm{info}$int64int32nag_int scalar
${\mathbf{info}}=0$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

## Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 $A+E x^=b ,$
where
 $E1 =OεA1$
and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 $x^-x 1 x 1 ≤ κA E1 A1 ,$
where $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Following the use of this function nag_lapack_dgtcon (f07cg) can be used to estimate the condition number of $A$ and nag_lapack_dgtrfs (f07ch) can be used to obtain approximate error bounds.

The total number of floating-point operations required to solve the equations $AX=B$ or ${A}^{\mathrm{T}}X=B$ is proportional to $nr$.
The complex analogue of this function is nag_lapack_zgttrs (f07cs).

## Example

This example solves the equations
 $AX=B ,$
where $A$ is the tridiagonal matrix
 $A = 3.0 2.1 0.0 0.0 0.0 3.4 2.3 -1.0 0.0 0.0 0.0 3.6 -5.0 1.9 0.0 0.0 0.0 7.0 -0.9 8.0 0.0 0.0 0.0 -6.0 7.1 and B = 2.7 6.6 -0.5 10.8 2.6 -3.2 0.6 -11.2 2.7 19.1 .$
```function f07ce_example

fprintf('f07ce example results\n\n');

% Tridiagonal matrix A stored as diagonals:
du = [        2.1    -1.0      1.9     8.0];
d  = [3.0     2.3    -5.0     -0.9     7.1];
dl = [3.4     3.6     7.0     -6.0        ];
n  = numel(d);

% Factorize A.
[dlf, df, duf, du2f, ipiv, info] = ...
f07cd(dl, d, du);

% Rhs B
b = [ 2.7,   6.6;
-0.5,  10.8;
2.6,  -3.2;
0.6, -11.2;
2.7,  19.1];

% Solve AX = B
trans = 'No transpose';
[x, info] = f07ce( ...
trans, dlf, df, duf, du2f, ipiv, b);

disp('Solution(s)');
disp(x);

```
```f07ce example results

Solution(s)
-4.0000    5.0000
7.0000   -4.0000
3.0000   -3.0000
-4.0000   -2.0000
-3.0000    1.0000

```