hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_pde_1d_parab_dae_coll (d03pj)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_pde_1d_parab_dae_coll (d03pj) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs), in one space variable with scope for coupled ordinary differential equations (ODEs). The spatial discretization is performed using a Chebyshev C0 collocation method, and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation formula (BDF) method or a Theta method (switching between Newton's method and functional iteration).

Syntax

[ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] = d03pj(npde, m, ts, tout, pdedef, bndary, u, xbkpts, npoly, npts, ncode, odedef, xi, uvinit, rtol, atol, itol, norm_p, laopt, algopt, rsave, isave, itask, itrace, ind, cwsav, lwsav, iwsav, rwsav, 'nbkpts', nbkpts, 'nxi', nxi, 'neqn', neqn, 'user', user)
[ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] = nag_pde_1d_parab_dae_coll(npde, m, ts, tout, pdedef, bndary, u, xbkpts, npoly, npts, ncode, odedef, xi, uvinit, rtol, atol, itol, norm_p, laopt, algopt, rsave, isave, itask, itrace, ind, cwsav, lwsav, iwsav, rwsav, 'nbkpts', nbkpts, 'nxi', nxi, 'neqn', neqn, 'user', user)
Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: lrsave and lisave were removed from the interface

Description

nag_pde_1d_parab_dae_coll (d03pj) integrates the system of parabolic-elliptic equations and coupled ODEs
j=1npdePi,j Uj t +Qi=x-m x xmRi,  i=1,2,,npde,  axb,tt0, (1)
Fit,V,V.,ξ,U*,Ux*,R*,Ut*,Uxt*=0,  i=1,2,,ncode, (2)
where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.
In (1), Pi,j and Ri depend on x, t, U, Ux, and V; Qi depends on x, t, U, Ux, V and linearly on V.. The vector U is the set of PDE solution values
U x,t = U 1 x,t ,, U npde x,t T ,  
and the vector Ux is the partial derivative with respect to x. Note that Pi,j, Qi and Ri must not depend on U t . The vector V is the set of ODE solution values
Vt=V1t,,VncodetT,  
and V. denotes its derivative with respect to time.
In (2), ξ represents a vector of nξ spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U*, Ux*, R*, Ut* and Uxt* are the functions U, Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend linearly on time derivatives. Hence the equation (2) may be written more precisely as
F=G-AV.-B Ut* Uxt* , (3)
where F = F1,,FncodeT , G is a vector of length ncode, A is an ncode by ncode matrix, B is an ncode by nξ×npde matrix and the entries in G, A and B may depend on t, ξ, U*, Ux* and V. In practice you need only supply a vector of information to define the ODEs and not the matrices A and B. (See Arguments for the specification of odedef.)
The integration in time is from t0 to tout, over the space interval axb, where a=x1 and b=xnbkpts are the leftmost and rightmost of a user-defined set of break-points x1,x2,,xnbkpts. The coordinate system in space is defined by the value of m; m=0 for Cartesian coordinates, m=1 for cylindrical polar coordinates and m=2 for spherical polar coordinates.
The PDE system which is defined by the functions Pi,j, Qi and Ri must be specified in pdedef.
The initial values of the functions Ux,t and Vt must be given at t=t0. These values are calculated in uvinit.
The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary conditions. The boundary conditions must have the form
βix,tRix,t,U,Ux,V=γix,t,U,Ux,V,V.,  i=1,2,,npde, (4)
where x=a or x=b. The functions γi may only depend linearly on V..
The boundary conditions must be specified in bndary.
The algebraic-differential equation system which is defined by the functions Fi must be specified in odedef. You must also specify the coupling points ξ in the array xi. Thus, the problem is subject to the following restrictions:
(i) in (1), V.jt, for j=1,2,,ncode, may only appear linearly in the functions Qi, for i=1,2,,npde, with a similar restriction for γ;
(ii) Pi,j and the flux Ri must not depend on any time derivatives;
(iii) t0<tout, so that integration is in the forward direction;
(iv) the evaluation of the functions Pi,j, Qi and Ri is done at both the break-points and internally selected points for each element in turn, that is Pi,j, Qi and Ri are evaluated twice at each break-point. Any discontinuities in these functions must therefore be at one or more of the mesh points;
(v) at least one of the functions Pi,j must be nonzero so that there is a time derivative present in the PDE problem;
(vi) if m>0 and x1=0.0, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done either by specifying the solution at x=0.0 or by specifying a zero flux there, that is βi=1.0 and γi=0.0.
The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh points. This ODE system is obtained by approximating the PDE solution between each pair of break-points by a Chebyshev polynomial of degree npoly. The interval between each pair of break-points is treated by nag_pde_1d_parab_dae_coll (d03pj) as an element, and on this element, a polynomial and its space and time derivatives are made to satisfy the system of PDEs at npoly-1 spatial points, which are chosen internally by the code and the break-points. The user-defined break-points and the internally selected points together define the mesh. The smallest value that npoly can take is one, in which case, the solution is approximated by piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary finite element method.
In total there are nbkpts-1×npoly+1 mesh points in the spatial direction, and npde×nbkpts-1×npoly+1+ncode ODEs in the time direction; one ODE at each break-point for each PDE component, npoly-1 ODEs for each PDE component between each pair of break-points, and ncode coupled ODEs. The system is then integrated forwards in time using a Backward Differentiation Formula (BDF) method or a Theta method.

References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall
Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic systems of PDEs ACM Trans. Math. Software 17 178–206
Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in simulation and optimization of large systems Proc. IMA Conf. Simulation and Optimization (ed A J Osiadcz) 35–50 Clarendon Press, Oxford
Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff differential equations Appl. Numer. Math. 9 1–19
Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel by a suction at porous walls Fluid Dynamics Research 4

Parameters

Compulsory Input Parameters

1:     npde int64int32nag_int scalar
The number of PDEs to be solved.
Constraint: npde1.
2:     m int64int32nag_int scalar
The coordinate system used:
m=0
Indicates Cartesian coordinates.
m=1
Indicates cylindrical polar coordinates.
m=2
Indicates spherical polar coordinates.
Constraint: m=0, 1 or 2.
3:     ts – double scalar
The initial value of the independent variable t.
Constraint: ts<tout.
4:     tout – double scalar
The final value of t to which the integration is to be carried out.
5:     pdedef – function handle or string containing name of m-file
pdedef must compute the functions Pi,j, Qi and Ri which define the system of PDEs. The functions may depend on x, t, U, Ux and V; Qi may depend linearly on V.. The functions must be evaluated at a set of points.
[p, q, r, ires, user] = pdedef(npde, t, x, nptl, u, ux, ncode, v, vdot, ires, user)

Input Parameters

1:     npde int64int32nag_int scalar
The number of PDEs in the system.
2:     t – double scalar
The current value of the independent variable t.
3:     xnptl – double array
Contains a set of mesh points at which Pi,j, Qi and Ri are to be evaluated. x1 and xnptl contain successive user-supplied break-points and the elements of the array will satisfy x1<x2<<xnptl.
4:     nptl int64int32nag_int scalar
The number of points at which evaluations are required (the value of npoly+1).
5:     unpdenptl – double array
uij contains the value of the component Uix,t where x=xj, for i=1,2,,npde and j=1,2,,nptl.
6:     uxnpdenptl – double array
uxij contains the value of the component Uix,t x  where x=xj, for i=1,2,,npde and j=1,2,,nptl.
7:     ncode int64int32nag_int scalar
The number of coupled ODEs in the system.
8:     vncode – double array
If ncode>0, vi contains the value of the component Vit, for i=1,2,,ncode.
9:     vdotncode – double array
If ncode>0, vdoti contains the value of component V.it, for i=1,2,,ncode.
Note:  V.it, for i=1,2,,ncode, may only appear linearly in Qj, for j=1,2,,npde.
10:   ires int64int32nag_int scalar
Set to -1​ or ​1.
11:   user – Any MATLAB object
pdedef is called from nag_pde_1d_parab_dae_coll (d03pj) with the object supplied to nag_pde_1d_parab_dae_coll (d03pj).

Output Parameters

1:     pnpdenpdenptl – double array
pijk must be set to the value of Pi,jx,t,U,Ux,V where x=xk, for i=1,2,,npde, j=1,2,,npde and k=1,2,,nptl.
2:     qnpdenptl – double array
qij must be set to the value of Qix,t,U,Ux,V,V. where x=xj, for i=1,2,,npde and j=1,2,,nptl.
3:     rnpdenptl – double array
rij must be set to the value of Rix,t,U,Ux,V where x=xi, for i=1,2,,npde and j=1,2,,nptl.
4:     ires int64int32nag_int scalar
Should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:
ires=2
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to ifail=6.
ires=3
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires=3 when a physically meaningless input or output value has been generated. If you consecutively set ires=3, then nag_pde_1d_parab_dae_coll (d03pj) returns to the calling function with the error indicator set to ifail=4.
5:     user – Any MATLAB object
6:     bndary – function handle or string containing name of m-file
bndary must compute the functions βi and γi which define the boundary conditions as in equation (4).
[beta, gamma, ires, user] = bndary(npde, t, u, ux, ncode, v, vdot, ibnd, ires, user)

Input Parameters

1:     npde int64int32nag_int scalar
The number of PDEs in the system.
2:     t – double scalar
The current value of the independent variable t.
3:     unpde – double array
ui contains the value of the component Uix,t at the boundary specified by ibnd, for i=1,2,,npde.
4:     uxnpde – double array
uxi contains the value of the component Uix,t x  at the boundary specified by ibnd, for i=1,2,,npde.
5:     ncode int64int32nag_int scalar
The number of coupled ODEs in the system.
6:     vncode – double array
If ncode>0, vi contains the value of the component Vit, for i=1,2,,ncode.
7:     vdotncode – double array
If ncode>0, vdoti contains the value of component V.it, for i=1,2,,ncode.
Note:  V.it, for i=1,2,,ncode, may only appear linearly in Qj, for j=1,2,,npde.
8:     ibnd int64int32nag_int scalar
Specifies which boundary conditions are to be evaluated.
ibnd=0
bndary must set up the coefficients of the left-hand boundary, x=a.
ibnd0
bndary must set up the coefficients of the right-hand boundary, x=b.
9:     ires int64int32nag_int scalar
Set to -1​ or ​1.
10:   user – Any MATLAB object
bndary is called from nag_pde_1d_parab_dae_coll (d03pj) with the object supplied to nag_pde_1d_parab_dae_coll (d03pj).

Output Parameters

1:     betanpde – double array
betai must be set to the value of βix,t at the boundary specified by ibnd, for i=1,2,,npde.
2:     gammanpde – double array
gammai must be set to the value of γix,t,U,Ux,V,V. at the boundary specified by ibnd, for i=1,2,,npde.
3:     ires int64int32nag_int scalar
Should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:
ires=2
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to ifail=6.
ires=3
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires=3 when a physically meaningless input or output value has been generated. If you consecutively set ires=3, then nag_pde_1d_parab_dae_coll (d03pj) returns to the calling function with the error indicator set to ifail=4.
4:     user – Any MATLAB object
7:     uneqn – double array
If ind=1 the value of u must be unchanged from the previous call.
8:     xbkptsnbkpts – double array
The values of the break-points in the space direction. xbkpts1 must specify the left-hand boundary, a, and xbkptsnbkpts must specify the right-hand boundary, b.
Constraint: xbkpts1<xbkpts2<<xbkptsnbkpts.
9:     npoly int64int32nag_int scalar
The degree of the Chebyshev polynomial to be used in approximating the PDE solution between each pair of break-points.
Constraint: 1npoly49.
10:   npts int64int32nag_int scalar
The number of mesh points in the interval a,b.
Constraint: npts=nbkpts-1×npoly+1.
11:   ncode int64int32nag_int scalar
The number of coupled ODE components.
Constraint: ncode0.
12:   odedef – function handle or string containing name of m-file
odedef must evaluate the functions F, which define the system of ODEs, as given in (3).
If you wish to compute the solution of a system of PDEs only (ncode=0), odedef must be the string nag_pde_1d_parab_remesh_fd_dummy_odedef (d53pck).
[f, ires, user] = odedef(npde, t, ncode, v, vdot, nxi, xi, ucp, ucpx, rcp, ucpt, ucptx, ires, user)

Input Parameters

1:     npde int64int32nag_int scalar
The number of PDEs in the system.
2:     t – double scalar
The current value of the independent variable t.
3:     ncode int64int32nag_int scalar
The number of coupled ODEs in the system.
4:     vncode – double array
If ncode>0, vi contains the value of the component Vit, for i=1,2,,ncode.
5:     vdotncode – double array
If ncode>0, vdoti contains the value of component V.it, for i=1,2,,ncode.
6:     nxi int64int32nag_int scalar
The number of ODE/PDE coupling points.
7:     xinxi – double array
If nxi>0, xii contains the ODE/PDE coupling points, ξi, for i=1,2,,nxi.
8:     ucpnpde: – double array
The second dimension of the array ucp must be at least max1,nxi.
If nxi>0, ucpij contains the value of Uix,t at the coupling point x=ξj, for i=1,2,,npde and j=1,2,,nxi.
9:     ucpxnpde: – double array
The second dimension of the array ucpx must be at least max1,nxi.
If nxi>0, ucpxij contains the value of Uix,t x  at the coupling point x=ξj, for i=1,2,,npde and j=1,2,,nxi.
10:   rcpnpde: – double array
The second dimension of the array rcp must be at least max1,nxi.
rcpij contains the value of the flux Ri at the coupling point x=ξj, for i=1,2,,npde and j=1,2,,nxi.
11:   ucptnpde: – double array
The second dimension of the array ucpt must be at least max1,nxi.
If nxi>0, ucptij contains the value of Ui t  at the coupling point x=ξj, for i=1,2,,npde and j=1,2,,nxi.
12:   ucptxnpde: – double array
The second dimension of the array ucptx must be at least max1,nxi.
ucptxij contains the value of 2Ui x t  at the coupling point x=ξj, for i=1,2,,npde and j=1,2,,nxi.
13:   ires int64int32nag_int scalar
The form of F that must be returned in the array f.
ires=1
Equation (5) must be used.
ires=-1
Equation (6) must be used.
14:   user – Any MATLAB object
odedef is called from nag_pde_1d_parab_dae_coll (d03pj) with the object supplied to nag_pde_1d_parab_dae_coll (d03pj).

Output Parameters

1:     fncode – double array
fi must contain the ith component of F, for i=1,2,,ncode, where F is defined as
F=G-AV.-B Ut* Uxt* , (5)
or
F=-AV.-B Ut* Uxt* . (6)
The definition of F is determined by the input value of ires.
2:     ires int64int32nag_int scalar
Should usually remain unchanged. However, you may reset ires to force the integration function to take certain actions as described below:
ires=2
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to ifail=6.
ires=3
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires=3 when a physically meaningless input or output value has been generated. If you consecutively set ires=3, then nag_pde_1d_parab_dae_coll (d03pj) returns to the calling function with the error indicator set to ifail=4.
3:     user – Any MATLAB object
13:   xi: – double array
The dimension of the array xi must be at least max1,nxi
xii, for i=1,2,,nxi, must be set to the ODE/PDE coupling points.
Constraint: xbkpts1xi1<xi2<<xinxixbkptsnbkpts.
14:   uvinit – function handle or string containing name of m-file
uvinit must compute the initial values of the PDE and the ODE components Uixj,t0, for i=1,2,,npde and j=1,2,,npts, and Vkt0, for k=1,2,,ncode.
[u, v, user] = uvinit(npde, npts, x, ncode, user)

Input Parameters

1:     npde int64int32nag_int scalar
The number of PDEs in the system.
2:     npts int64int32nag_int scalar
The number of mesh points in the interval a,b.
3:     xnpts – double array
xi, for i=1,2,,npts, contains the current values of the space variable xi.
4:     ncode int64int32nag_int scalar
The number of coupled ODEs in the system.
5:     user – Any MATLAB object
uvinit is called from nag_pde_1d_parab_dae_coll (d03pj) with the object supplied to nag_pde_1d_parab_dae_coll (d03pj).

Output Parameters

1:     unpdenpts – double array
If nxi>0, uij contains the value of the component Uixj,t0, for i=1,2,,npde and j=1,2,,npts.
2:     vncode – double array
vi contains the value of component Vit0, for i=1,2,,ncode.
3:     user – Any MATLAB object
15:   rtol: – double array
The dimension of the array rtol must be at least 1 if itol=1 or 2 and at least neqn if itol=3 or 4
The relative local error tolerance.
Constraint: rtoli0.0 for all relevant i.
16:   atol: – double array
The dimension of the array atol must be at least 1 if itol=1 or 3 and at least neqn if itol=2 or 4
The absolute local error tolerance.
Constraint: atoli0.0 for all relevant i.
Note: corresponding elements of rtol and atol cannot both be 0.0.
17:   itol int64int32nag_int scalar
A value to indicate the form of the local error test. itol indicates to nag_pde_1d_parab_dae_coll (d03pj) whether to interpret either or both of rtol or atol as a vector or scalar. The error test to be satisfied is ei/wi<1.0, where wi is defined as follows:
itolrtolatolwi
1scalarscalarrtol1×Ui+atol1
2scalarvectorrtol1×Ui+atoli
3vectorscalarrtoli×Ui+atol1
4vectorvectorrtoli×Ui+atoli
In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE system in time, ui, for i=1,2,,neqn.
The choice of norm used is defined by the argument norm_p.
Constraint: 1itol4.
18:   norm_p – string (length ≥ 1)
The type of norm to be used.
norm_p='M'
Maximum norm.
norm_p='A'
Averaged L2 norm.
If unorm denotes the norm of the vector u of length neqn, then for the averaged L2 norm
unorm=1neqni=1neqnui/wi2,  
while for the maximum norm
u norm = maxi ui / wi .  
See the description of itol for the formulation of the weight vector w.
Constraint: norm_p='M' or 'A'.
19:   laopt – string (length ≥ 1)
The type of matrix algebra required.
laopt='F'
Full matrix methods to be used.
laopt='B'
Banded matrix methods to be used.
laopt='S'
Sparse matrix methods to be used.
Constraint: laopt='F', 'B' or 'S'.
Note: you are recommended to use the banded option when no coupled ODEs are present (i.e., ncode=0).
20:   algopt30 – double array
May be set to control various options available in the integrator. If you wish to employ all the default options, then algopt1 should be set to 0.0. Default values will also be used for any other elements of algopt set to zero. The permissible values, default values, and meanings are as follows:
algopt1
Selects the ODE integration method to be used. If algopt1=1.0, a BDF method is used and if algopt1=2.0, a Theta method is used. The default value is algopt1=1.0.
If algopt1=2.0, then algopti, for i=2,3,4 are not used.
algopt2
Specifies the maximum order of the BDF integration formula to be used. algopt2 may be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt2=5.0.
algopt3
Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If algopt3=1.0 a modified Newton iteration is used and if algopt3=2.0 a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is algopt3=1.0.
algopt4
Specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as Pi,j=0.0, for j=1,2,,npde, for some i or when there is no V.it dependence in the coupled ODE system. If algopt4=1.0, then the Petzold test is used. If algopt4=2.0, then the Petzold test is not used. The default value is algopt4=1.0.
If algopt1=1.0, then algopti, for i=5,6,7, are not used.
algopt5
Specifies the value of Theta to be used in the Theta integration method. 0.51algopt50.99. The default value is algopt5=0.55.
algopt6
Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If algopt6=1.0, a modified Newton iteration is used and if algopt6=2.0, a functional iteration method is used. The default value is algopt6=1.0.
algopt7
Specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If algopt7=1.0, then switching is allowed and if algopt7=2.0, then switching is not allowed. The default value is algopt7=1.0.
algopt11
Specifies a point in the time direction, tcrit, beyond which integration must not be attempted. The use of tcrit is described under the argument itask. If algopt10.0, a value of 0.0 for algopt11, say, should be specified even if itask subsequently specifies that tcrit will not be used.
algopt12
Specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, algopt12 should be set to 0.0.
algopt13
Specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, algopt13 should be set to 0.0.
algopt14
Specifies the initial step size to be attempted by the integrator. If algopt14=0.0, then the initial step size is calculated internally.
algopt15
Specifies the maximum number of steps to be attempted by the integrator in any one call. If algopt15=0.0, then no limit is imposed.
algopt23
Specifies what method is to be used to solve the nonlinear equations at the initial point to initialize the values of U, Ut, V and V.. If algopt23=1.0, a modified Newton iteration is used and if algopt23=2.0, functional iteration is used. The default value is algopt23=1.0.
algopt29 and algopt30 are used only for the sparse matrix algebra option, laopt='S'.
algopt29
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range 0.0<algopt29<1.0, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If algopt29 lies outside this range then the default value is used. If the functions regard the Jacobian matrix as numerically singular then increasing algopt29 towards 1.0 may help, but at the cost of increased fill-in. The default value is algopt29=0.1.
algopt30
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see algopt29) below which an internal error is invoked. If algopt30 is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see algopt29). The default value is algopt30=0.0001.
21:   rsavelrsave – double array
If ind=0, rsave need not be set on entry.
If ind=1, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.
22:   isavelisave int64int32nag_int array
If ind=0, isave need not be set on entry.
If ind=1, isave must be unchanged from the previous call to the function because it contains required information about the iteration required for subsequent calls. In particular:
isave1
Contains the number of steps taken in time.
isave2
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave3
Contains the number of Jacobian evaluations performed by the time integrator.
isave4
Contains the order of the ODE method last used in the time integration.
isave5
Contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the LU decomposition of the Jacobian matrix.
23:   itask int64int32nag_int scalar
Specifies the task to be performed by the ODE integrator.
itask=1
Normal computation of output values u at t=tout.
itask=2
One step and return.
itask=3
Stop at first internal integration point at or beyond t=tout.
itask=4
Normal computation of output values u at t=tout but without overshooting t=tcrit where tcrit is described under the argument algopt.
itask=5
Take one step in the time direction and return, without passing tcrit, where tcrit is described under the argument algopt.
Constraint: itask=1, 2, 3, 4 or 5.
24:   itrace int64int32nag_int scalar
The level of trace information required from nag_pde_1d_parab_dae_coll (d03pj) and the underlying ODE solver. itrace may take the value -1, 0, 1, 2 or 3.
itrace=-1
No output is generated.
itrace=0
Only warning messages from the PDE solver are printed on the current error message unit (see nag_file_set_unit_error (x04aa)).
itrace>0
Output from the underlying ODE solver is printed on the current advisory message unit (see nag_file_set_unit_advisory (x04ab)). This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.
If itrace<-1, then -1 is assumed and similarly if itrace>3, then 3 is assumed.
The advisory messages are given in greater detail as itrace increases. You are advised to set itrace=0, unless you are experienced with Sub-chapter D02M–N.
25:   ind int64int32nag_int scalar
Indicates whether this is a continuation call or a new integration.
ind=0
Starts or restarts the integration in time.
ind=1
Continues the integration after an earlier exit from the function. In this case, only the arguments tout and ifail should be reset between calls to nag_pde_1d_parab_dae_coll (d03pj).
Constraint: ind=0 or 1.
26:   cwsav10 – cell array of strings
27:   lwsav100 – logical array
28:   iwsav505 int64int32nag_int array
29:   rwsav1100 – double array

Optional Input Parameters

1:     nbkpts int64int32nag_int scalar
Default: the dimension of the array xbkpts.
The number of break-points in the interval a,b.
Constraint: nbkpts2.
2:     nxi int64int32nag_int scalar
Default: the dimension of the array xi.
The number of ODE/PDE coupling points.
Constraints:
  • if ncode=0, nxi=0;
  • if ncode>0, nxi0.
3:     neqn int64int32nag_int scalar
Default: the dimension of the array u.
The number of ODEs in the time direction.
Constraint: neqn=npde×npts+ncode.
4:     user – Any MATLAB object
user is not used by nag_pde_1d_parab_dae_coll (d03pj), but is passed to pdedef, bndary, odedef and uvinit. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use user.

Output Parameters

1:     ts – double scalar
The value of t corresponding to the solution values in u. Normally ts=tout.
2:     uneqn – double array
The computed solution Uixj,t, for i=1,2,,npde and j=1,2,,npts, and Vkt, for k=1,2,,ncode, evaluated at t=ts, as follows:
  • unpde×j-1+i contain Uixj,t, for i=1,2,,npde and j=1,2,,npts, and
  • unpts×npde+i contain Vit, for i=1,2,,ncode.
3:     xnpts – double array
The mesh points chosen by nag_pde_1d_parab_dae_coll (d03pj) in the spatial direction. The values of x will satisfy x1<x2<<xnpts.
4:     rsavelrsave – double array
If ind=1, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.
5:     isavelisave int64int32nag_int array
If ind=1, isave must be unchanged from the previous call to the function because it contains required information about the iteration required for subsequent calls. In particular:
isave1
Contains the number of steps taken in time.
isave2
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave3
Contains the number of Jacobian evaluations performed by the time integrator.
isave4
Contains the order of the ODE method last used in the time integration.
isave5
Contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the LU decomposition of the Jacobian matrix.
6:     ind int64int32nag_int scalar
ind=1.
7:     user – Any MATLAB object
8:     cwsav10 – cell array of strings
9:     lwsav100 – logical array
10:   iwsav505 int64int32nag_int array
11:   rwsav1100 – double array
12:   ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail=1
On entry,tout-ts is too small,
oritask1, 2, 3, 4 or 5,
orm0, 1 or 2,
orat least one of the coupling point in array xi is outside the interval [xbkpts1,xbkptsnbkpts],
ornptsnbkpts-1×npoly+1,
ornbkpts<2,
ornpde0,
ornorm_p'A' or 'M',
oritol1, 2, 3 or 4,
ornpoly<1 or npoly>49,
orncode and nxi are incorrectly defined,
orneqnnpde×npts+ncode,
orlaopt'F', 'B' or 'S',
orind0 or 1,
orbreak-points xbkptsi are badly ordered,
orlrsave is too small,
orlisave is too small,
orthe ODE integrator has not been correctly defined; check algopt argument,
oreither an element of rtol or atol<0.0,
orall the elements of rtol and atol are zero.
W  ifail=2
The underlying ODE solver cannot make any further progress, with the values of atol and rtol, across the integration range from the current point t=ts. The components of u contain the computed values at the current point t=ts.
W  ifail=3
In the underlying ODE solver, there were repeated error test failures on an attempted step, before completing the requested task, but the integration was successful as far as t=ts. The problem may have a singularity, or the error requirement may be inappropriate.
   ifail=4
In setting up the ODE system, the internal initialization function was unable to initialize the derivative of the ODE system. This could be due to the fact that ires was repeatedly set to 3 in at least pdedef, bndary or odedef, when the residual in the underlying ODE solver was being evaluated.
   ifail=5
In solving the ODE system, a singular Jacobian has been encountered. You should check your problem formulation.
W  ifail=6
When evaluating the residual in solving the ODE system, ires was set to 2 in at least pdedef, bndary or odedef. Integration was successful as far as t=ts.
   ifail=7
The values of atol and rtol are so small that the function is unable to start the integration in time.
   ifail=8
In one of pdedef, bndary or odedef, ires was set to an invalid value.
   ifail=9 (nag_ode_ivp_stiff_imp_revcom (d02nn))
A serious error has occurred in an internal call to the specified function. Check the problem specification and all arguments and array dimensions. Setting itrace=1 may provide more information. If the problem persists, contact NAG.
W  ifail=10
The required task has been completed, but it is estimated that a small change in atol and rtol is unlikely to produce any change in the computed solution. (Only applies when you are not operating in one step mode, that is when itask2 or 5.)
   ifail=11
An error occurred during Jacobian formulation of the ODE system (a more detailed error description may be directed to the current error message unit).
   ifail=12
In solving the ODE system, the maximum number of steps specified in algopt15 have been taken.
W  ifail=13
Some error weights wi became zero during the time integration (see the description of itol). Pure relative error control (atoli=0.0) was requested on a variable (the ith) which has become zero. The integration was successful as far as t=ts.
   ifail=14
The flux function Ri was detected as depending on time derivatives, which is not permissible.
   ifail=15
When using the sparse option, the value of lisave or lrsave was not sufficient (more detailed information may be directed to the current error message unit).
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

nag_pde_1d_parab_dae_coll (d03pj) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument atol and rtol.

Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem.
The time taken depends on the complexity of the parabolic system and on the accuracy requested.

Example

This example provides a simple coupled system of one PDE and one ODE.
V 1 2 U 1 t -x V 1 V . 1 U 1 x = 2 U 1 x 2 V . 1 = V 1 U 1 + U 1 x +1 +t ,  
for t10-4,0.1×2i,  i=1,2,,5,x0,1.
The left boundary condition at x=0 is
U1 x =-V1expt.  
The right boundary condition at x=1 is
U1=-V1V.1.  
The initial conditions at t=10-4 are defined by the exact solution:
V1=t,   and  U1x,t=expt1-x-1.0,  x0,1,  
and the coupling point is at ξ1=1.0.
function d03pj_example


fprintf('d03pj example results\n\n');

npde   = int64(1);
m      = int64(0);
ts     = 0.0001;
tout   = 0.2;
u      = zeros(22,1);
xbkpts = [0:0.1:1];
npoly  = int64(2);
npts   = int64(21);
ncode  = int64(1);
xi     = [1];
rtol   = [0.0001];
atol   = rtol;
itol   = int64(1);
normt  = 'A';
laopt  = 'F';
algopt = zeros(30,1);
rsave  = zeros(900, 1);
isave  = zeros(24, 1, 'int64');
itask  = int64(1);
itrace = int64(0);
ind   = int64(0);
cwsav = {''; ''; ''; ''; ''; ''; ''; ''; ''; ''};
lwsav = false(100, 1);
iwsav = zeros(505, 1, 'int64');
rwsav = zeros(1100, 1);

t = [0.1:3.1/19:3.2];

for i_t = 1:numel(t)
  tout = t(i_t);
  [ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] = ...
  d03pj( ...
         npde, m, ts, tout, @pdedef, @bndary, u, xbkpts, ...
         npoly, npts, ncode, @odedef, xi, @uvinit, rtol, atol, itol, ...
         normt, laopt, algopt, rsave, isave, itask, itrace, ind, ...
         cwsav, lwsav, iwsav, rwsav);

  if (i_t==1)
    % with ind==1, x is not returned again
    xs = reshape(x,[7,3]);
  end
  if mod(i_t+4,6)==0
    fprintf('\nThe solution at t = %7.4f is:\n',ts);
    for j = 0:2
      fprintf('%10s%12s','x','u(x,t)');
    end
    fprintf('\n');

    us = reshape(u(1:21),[7,3]);
    for i = 1:7
      for j = 1:3
        fprintf('%12.2f%10.4f',xs(i,j),us(i,j));
      end
      fprintf('\n');
    end
  end
  v(:,i_t) = u(1:(end-1));
end

fig1 = figure;
x = reshape(xs,[21,1]);
mesh(t,x,v);
xlabel('t');
ylabel('x');
zlabel('u(x,t)');
title('Coupled Parabolic PDE/ODE using Collocation and BDF');


function [p,q,r,ires,user] = pdedef(npde,t,x,nptl,u,ux,ncode,v,vdot,ires,user)
  p = zeros(npde,npde,nptl);
  q = zeros(npde,nptl);
  r = zeros(npde,nptl);

  p(1,1,:) = v(1)*v(1);
  r(1,:) = ux(1,1:nptl);
  q(1,1:nptl) = -x(1:nptl)'.*ux(1,1:nptl)*(v(1)*vdot(1));

function [beta,gamma,ires,user] = bndary(npde,t,u,ux,ncode,v,vdot,ibnd,...
                                         ires,user)
  beta = zeros(npde,1);
  gamma = zeros(npde,1);
  beta(1) = 1;
  if (ibnd == 0)
    gamma(1) = -v(1)*exp(t);
  else
    gamma(1) = -v(1)*vdot(1);
  end

function [f,ires,user] = odedef(npde,t,ncode,v,vdot,nxi,xi,ucp, ...
                                ucpx,rcp,ucpt,ucptx,ires,user)
  f = zeros(ncode,1);
  if (ires == 1)
    f(1) = vdot(1) - v(1)*ucp(1,1) - ucpx(1,1) - 1 - t;
  elseif (ires == -1)
    f(1) = vdot(1);
  end

function [u,v,user] = uvinit(npde,npts,x,ncode,user)
  u = zeros(npde,npts);
  ts = 1e-4;

  v(1) = ts;
  u = exp(ts*(1-x)) - 1;
d03pj example results


The solution at t =  0.2632 is:
         x      u(x,t)         x      u(x,t)         x      u(x,t)
        0.00    0.3014        0.35    0.1869        0.70    0.0825
        0.05    0.2844        0.40    0.1714        0.75    0.0683
        0.10    0.2676        0.45    0.1561        0.80    0.0543
        0.15    0.2510        0.50    0.1409        0.85    0.0406
        0.20    0.2347        0.55    0.1260        0.90    0.0270
        0.25    0.2185        0.60    0.1113        0.95    0.0135
        0.30    0.2026        0.65    0.0968        1.00    0.0003

The solution at t =  1.2421 is:
         x      u(x,t)         x      u(x,t)         x      u(x,t)
        0.00    2.4634        0.35    1.2421        0.70    0.4514
        0.05    2.2548        0.40    1.1071        0.75    0.3639
        0.10    2.0588        0.45    0.9801        0.80    0.2818
        0.15    1.8746        0.50    0.8609        0.85    0.2045
        0.20    1.7014        0.55    0.7488        0.90    0.1319
        0.25    1.5387        0.60    0.6434        0.95    0.0637
        0.30    1.3858        0.65    0.5444        1.00   -0.0004

The solution at t =  2.2211 is:
         x      u(x,t)         x      u(x,t)         x      u(x,t)
        0.00    8.2169        0.35    3.2347        0.70    0.9449
        0.05    7.2478        0.40    2.7893        0.75    0.7401
        0.10    6.3805        0.45    2.3908        0.80    0.5569
        0.15    5.6045        0.50    2.0341        0.85    0.3929
        0.20    4.9099        0.55    1.7149        0.90    0.2461
        0.25    4.2885        0.60    1.4293        0.95    0.1147
        0.30    3.7323        0.65    1.1736        1.00   -0.0029

The solution at t =  3.2000 is:
         x      u(x,t)         x      u(x,t)         x      u(x,t)
        0.00   23.5336        0.35    6.9983        0.70    1.6052
        0.05   19.9047        0.40    5.8146        0.75    1.2189
        0.10   16.8115        0.45    4.8060        0.80    0.8898
        0.15   14.1765        0.50    3.9466        0.85    0.6092
        0.20   11.9308        0.55    3.2142        0.90    0.3701
        0.25   10.0177        0.60    2.5902        0.95    0.1662
        0.30    8.3873        0.65    2.0584        1.00   -0.0076
d03pj_fig1.png

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015