NAG Toolbox
nag_mv_discrim_mahal (g03db)

1 Purpose

nag_mv_discrim_mahal (g03db) computes Mahalanobis squared distances for group or pooled variancecovariance matrices. It is intended for use after nag_mv_discrim (g03da).

2 Syntax

```
[d, ifail] = nag_mv_discrim_mahal(equal, mode, gmn, gc, nobs, isx, x, 'nvar',
nvar, 'ng', ng, 'm', m)
[d, ifail] = g03db(equal, mode, gmn, gc, nobs, isx, x, 'nvar', nvar, 'ng', ng,
'm', m)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: ng was made optional.

3 Description

Consider p variables observed on n_{g} populations or groups. Let \bar{x}_{j} be the sample mean and S_{j} the within-group variance-covariance matrix for the j th group and let x_{k} be the k th sample point in a dataset. A measure of the distance of the point from the j th population or group is given by the Mahalanobis distance, $D_{k j}$:

$$
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{\mathrm{T}} S_{j}^{-1}\left(x_{k}-\bar{x}_{j}\right)
$$

If the pooled estimated of the variance-covariance matrix S is used rather than the within-group variance-covariance matrices, then the distance is:

$$
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{\mathrm{T}} S^{-1}\left(x_{k}-\bar{x}_{j}\right) .
$$

Instead of using the variance-covariance matrices S and S_{j}, nag_mv_discrim_mahal (g03db) uses the upper triangular matrices R and R_{j} supplied by nag_mv_discrim (g03da) such that $S=R^{\mathrm{T}} R$ and $S_{j}=R_{j}^{\mathrm{T}} R_{j} . D_{k j}^{2}$ can then be calculated as $z^{\mathrm{T}} z$ where $R_{j} z=\left(x_{k}-\bar{x}_{j}\right)$ or $R z=\left(x_{k}-\bar{x}_{j}\right)$ as appropriate.
A particular case is when the distance between the group or population means is to be estimated. The Mahalanobis squared distance between the i th and j th groups is:

$$
D_{i j}^{2}=\left(\bar{x}_{i}-\bar{x}_{j}\right)^{\mathrm{T}} S_{j}^{-1}\left(\bar{x}_{i}-\bar{x}_{j}\right)
$$

or

$$
D_{i j}^{2}=\left(\bar{x}_{i}-\bar{x}_{j}\right)^{\mathrm{T}} S^{-1}\left(\bar{x}_{i}-\bar{x}_{j}\right)
$$

Note: $D_{j j}^{2}=0$ and that in the case when the pooled variance-covariance matrix is used $D_{i j}^{2}=D_{j i}^{2}$ so in this case only the lower triangular values of $D_{i j}^{2}, i>j$, are computed.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge
Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters

5.1 Compulsory Input Parameters

equal - CHARACTER(1)

Indicates whether or not the within-group variance-covariance matrices are assumed to be equal and the pooled variance-covariance matrix used.
equal $=$ ' E^{\prime}
The within-group variance-covariance matrices are assumed equal and the matrix R stored in the first $p(p+1) / 2$ elements of $\mathbf{g c}$ is used.
equal $=$ ' U^{\prime}
The within-group variance-covariance matrices are assumed to be unequal and the matrices R_{j}, for $j=1,2, \ldots, n_{g}$, stored in the remainder of $\mathbf{g c}$ are used.
Constraint: equal $=$ ' E ' or ' U '.
2: mode - CHARACTER(1)
Indicates whether distances from sample points are to be calculated or distances between the group means.
mode $=$ 'S'
The distances between the sample points given in \mathbf{x} and the group means are calculated.
$\operatorname{mode}={ }^{\prime} \mathrm{M}^{\prime}$
The distances between the group means will be calculated.
Constraint: mode $=$ ' M ' or ' S '.
gmn(ldgmn, nvar) - REAL (KIND=nag_wp) array
$l d g m n$, the first dimension of the array, must satisfy the constraint $l d g m n \geq \mathbf{n g}$.
The j th row of gmn contains the means of the p selected variables for the j th group, for $j=1,2, \ldots, n_{g}$. These are returned by nag_mv_discrim (g03da).

4: $\quad \mathbf{g c}((\mathbf{n g}+\mathbf{1}) \times \mathbf{n v a r} \times(\mathbf{n v a r}+\mathbf{1}) / \mathbf{2})-$ REAL (KIND=nag_wp) array
The first $p(p+1) / 2$ elements of $\mathbf{g c}$ should contain the upper triangular matrix R and the next n_{g} blocks of $p(p+1) / 2$ elements should contain the upper triangular matrices R_{j}. All matrices must be stored packed by column. These matrices are returned by nag_mv_discrim (g03da). If equal $=$ ' E ' only the first $p(p+1) / 2$ elements are referenced, if equal $=$ ' U ' only the elements $p(p+1) / 2+1$ to $\left(n_{g}+1\right) p(p+1) / 2$ are referenced.

Constraints:
if equal $=$ ' E ', $R \neq 0.0$;
if equal $=$ 'U', the diagonal elements of the $R_{j} \neq 0.0$, for $j=1,2, \ldots$, ng.
5: nobs - INTEGER
If mode $=$ ' S ', the number of sample points in \mathbf{x} for which distances are to be calculated.
If mode $=$ ' M ', nobs is not referenced.
Constraint: if nobs ≥ 1, mode $=$ 'S'.
6: isx(:) - INTEGER array
The dimension of the array isx must be at least $\max (1, \mathbf{m})$
If mode $=$ ' S ', isx (l) indicates if the l th variable in \mathbf{x} is to be included in the distance calculations. If $\operatorname{isx}(l)>0$ the l th variable is included, for $l=1,2, \ldots, \mathbf{m}$; otherwise the l th variable is not referenced.

If mode $=$ ' M ', isx is not referenced.
Constraint: if mode $=$ ' S ', isx $(l)>0$ for nvar values of l.

7: $\quad \mathbf{x}(l d x,:)-$ REAL (KIND=nag_wp) array
The first dimension, $l d x$, of the array \mathbf{x} must satisfy
if mode $=$ ' S ', $l d x \geq$ nobs;
otherwise 1 .
The second dimension of the array \mathbf{x} must be at least $\max (1, \mathbf{m})$.
If mode $=$ ' S ' the k th row of \mathbf{x} must contain x_{k}. That is $\mathbf{x}(k, l)$ must contain the k th sample value for the l th variable, for $k=1,2, \ldots$, nobs and $l=1,2, \ldots, \mathbf{m}$. Otherwise \mathbf{x} is not referenced.

5.2 Optional Input Parameters

1: nvar - INTEGER
Default: the second dimension of the array gmn.
p, the number of variables in the variance-covariance matrices as specified to nag_mv_discrim (g03da).
Constraint: nvar ≥ 1.
2: ng - INTEGER
Default: the first dimension of the array gmn.
The number of groups, n_{g}.
Constraint: $\mathbf{n g} \geq 2$.
3: \mathbf{m} - INTEGER
Default: the dimension of the arrays isx, \mathbf{x}.
If mode $=$ ' S ', the number of variables in the data array \mathbf{x}.
If mode $={ }^{\prime} \mathrm{M}^{\prime}$, \mathbf{m} is not referenced.
Constraint: if $\mathbf{m} \geq \mathbf{n v a r}$, mode $=$ 'S'.

5.3 Output Parameters

$\mathbf{d}(l d d, \mathbf{n g})$ - REAL (KIND=nag_wp) array
The squared distances.
If mode $=$ 'S', $\mathbf{d}(k, j)$ contains the squared distance of the k th sample point from the j th group mean, $D_{k j}^{2}$, for $k=1,2, \ldots$, nobs and $j=1,2, \ldots, n_{g}$.

If mode $=$ ' M^{\prime} and equal $=$ ' U ', $\mathbf{d}(i, j)$ contains the squared distance between the i th mean and the j th mean, $D_{i j}^{2}$, for $i=1,2, \ldots, n_{g}$ and $j=1,2, \ldots, i-1, i+1, \ldots, n_{g}$. The elements $\mathbf{d}(i, i)$ are not referenced, for $i=1,2, \ldots, n_{g}$.
If mode $=$ ' M^{\prime} and equal $=$ ' E ', $\mathbf{d}(i, j)$ contains the squared distance between the i th mean and the j th mean, $D_{i j}^{2}$, for $i=1,2, \ldots, n_{g}$ and $j=1,2, \ldots, i-1$. Since $D_{i j}=D_{j i}$ the elements $\mathbf{d}(i, j)$ are not referenced, for $i=1,2, \ldots, n_{g}$ and $j=i+1, \ldots, n_{g}$.
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
On entry, nvar <1,
or $\quad \mathbf{n g}<2$,
or $\quad \operatorname{ldgmn}<\mathbf{n g}$,
or \quad mode $=$ 'S' and nobs <1,
or \quad mode $=$ 'S' and $\mathbf{m}<$ nvar,
or mode $=$ 'S' and $l d x<$ nobs,
or mode $=$ 'S' and $l d d<$ nobs,
or \quad mode $=$ ' M ' and $l d d<\mathbf{n g}$,
or equal \neq ' E ' or ' U ',
or $\quad \operatorname{mode} \neq$ ' M^{\prime} or ' S '.

ifail $=2$

On entry, mode $=$ ' S ' and the number of variables indicated by isx is not equal to nvar,
or equal $=$ ' E ' and a diagonal element of R is zero,
or \quad equal $=$ ' U ' and a diagonal element of R_{j} for some j is zero.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.

ifail $=-399$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

The accuracy will depend upon the accuracy of the input R or R_{j} matrices.

8 Further Comments

If the distances are to be used for discrimination, see also nag_mv_discrim_group (g03dc).

9 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr} \mathrm{)} \mathrm{of} \mathrm{two}$ steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices are computed by nag_mv_discrim (g03da). A further six observations of unknown type are input, and the distances from the group means of the 21 patients of known type are computed under the assumption that the within-group variance-covariance matrices are not equal. These results are printed and indicate that the first four are close to one of the groups while observations 5 and 6 are some distance from any group.

9.1 Program Text

function g03db_example
fprintf('g03db example results\n\n');

```
x = [1.1314, 2.4596;
    1.0986, 0.2624;
    0.6419, -2.3026;
    1.3350, -3.2189;
    1.4110, 0.0953;
    0.6419, -0.9163;
    2.1163, 0.0000;
    1.3350, -1.6094;
    1.3610, -0.5108;
    2.0541, 0.1823;
    2.2083, -0.5108;
    2.7344, 1.2809;
    2.0412, 0.4700;
    1.8718, -0.9163;
    1.7405, -0.9163;
    2.6101, 0.4700;
    2.3224, 1.8563;
    2.2192, 2.0669;
    2.2618, 1.1314;
    3.9853, 0.9163;
    2.7600, 2.0281];
[n,m] = size(x);
isx = ones(m,1,nag_int_name);
nvar = nag_int(m);
ing = ones(n,1,nag_int_name);
ing(7:16) = nag_int(2);
ing(17:n) = nag_int(3);
ng = nag_int(3);
```

\% Compute covariance matrix
[nig, gmean, det, gc, stat, df, sig, ifail] = ...
g03da(...
x, isx, nvar, ing, ng);
equal $=$ 'U';
mode $=$ 'Sample points';
nobs $=$ nag_int (6);
\% Data from which to compute distances
$\mathrm{x}=[1.6292,-0.9163$;
2.5572, 1.6094;
2.5649, -0.2231;
0.9555, -2.3026;
3.4012, -2.3026;
3.0204, -0.2231];
\% Compute distances
[d, ifail] $=$ g03db (..
equal, mode, gmean, gc, nobs, isx, x);
mtitle $=$ 'Distances';
matrix $=$ 'General';
diag $=$ ' ';
[ifail] $=x 04 \mathrm{ca}(\ldots$.
matrix, diag, d, mtitle);

9.2 Program Results

g03db example results			
Distances			
1	3.3393	0.7521	50.9283
2	20.7771	5.6559	0.0597
3	21.3631	4.8411	19.4978
4	0.7184	6.2803	124.7323
5	55.0003	88.8604	71.7852
6	36.1703	15.7849	15.7489

