NAG Toolbox

nag_mv_discrim (g03da)

1 Purpose

nag_mv_discrim (g03da) computes a test statistic for the equality of within-group covariance matrices and also computes matrices for use in discriminant analysis.

2 Syntax

```
[nig, gmn, det, gc, stat, df, sig, ifail] = nag_mv_discrim(x, isx, nvar, ing,
ng, 'n', n, 'm', m, 'wt', wt)
[nig, gmn, det, gc, stat, df, sig, ifail] = g03da(x, isx, nvar, ing, ng, 'n', n,
'm', m, 'wt', wt)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 24: weight was removed from the interface; wt was made optional.

3 Description

Let a sample of n observations on p variables come from n_{g} groups with n_{j} observations in the j th group and $\sum n_{j}=n$. If the data is assumed to follow a multivariate Normal distribution with the variance-covariance matrix of the j th group Σ_{j}, then to test for equality of the variance-covariance matrices between groups, that is, $\Sigma_{1}=\Sigma_{2}=\cdots=\Sigma_{n_{g}}=\Sigma$, the following likelihood-ratio test statistic, G, can be used;

$$
G=C\left\{\left(n-n_{g}\right) \log |S|-\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) \log \left|S_{j}\right|\right\}
$$

where

$$
C=1-\frac{2 p^{2}+3 p-1}{6(p+1)\left(n_{g}-1\right)}\left(\sum_{j=1}^{n_{g}} \frac{1}{\left(n_{j}-1\right)}-\frac{1}{\left(n-n_{g}\right)}\right)
$$

and S_{j} are the within-group variance-covariance matrices and S is the pooled variance-covariance matrix given by

$$
S=\frac{\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) S_{j}}{\left(n-n_{g}\right)}
$$

For large n, G is approximately distributed as a χ^{2} variable with $\frac{1}{2} p(p+1)\left(n_{g}-1\right)$ degrees of freedom, see Morrison (1967) for further comments. If weights are used, then S and S_{j} are the weighted pooled and within-group variance-covariance matrices and n is the effective number of observations, that is, the sum of the weights.
Instead of calculating the within-group variance-covariance matrices and then computing their determinants in order to calculate the test statistic, nag_mv_discrim (g03da) uses a $Q R$ decomposition. The group means are subtracted from the data and then for each group, a $Q R$ decomposition is computed to give an upper triangular matrix R_{j}^{*}. This matrix can be scaled to give a matrix R_{j} such that $S_{j}=R_{j}^{\mathrm{T}} R_{j}$. The pooled R matrix is then computed from the R_{j} matrices. The values of $|S|$ and the $\left|S_{j}\right|$ can then be calculated from the diagonal elements of R and the R_{j}.

This approach means that the Mahalanobis squared distances for a vector observation x can be computed as $z^{\mathrm{T}} z$, where $R_{j} z=\left(x-\bar{x}_{j}\right), \bar{x}_{j}$ being the vector of means of the j th group. These distances can be calculated by nag_mv_discrim_mahal (g03db). The distances are used in discriminant analysis and nag_mv_discrim_group (g03dc) uses the results of nag_mv_discrim (g03da) to perform several different types of discriminant analysis. The differences between the discriminant methods are, in part, due to whether or not the within-group variance-covariance matrices are equal.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge
Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{x}(l d x, \mathbf{m})-$ REAL (KIND=$=$ nag_wp $)$ array
$l d x$, the first dimension of the array, must satisfy the constraint $l d x \geq \mathbf{n}$.
$\mathbf{x}(k, l)$ must contain the k th observation for the l th variable, for $k=1,2, \ldots, n$ and $l=1,2, \ldots, \mathbf{m}$.

2: $\quad \mathbf{i s x}(\mathbf{m})-$ INTEGER array
$\mathbf{i s x}(l)$ indicates whether or not the l th variable in \mathbf{x} is to be included in the variance-covariance matrices.

If $\operatorname{isx}(l)>0$ the l th variable is included, for $l=1,2, \ldots, \mathbf{m}$; otherwise it is not referenced.
Constraint: $\mathbf{i s x}(l)>0$ for nvar values of l.
3: nvar - INTEGER
p, the number of variables in the variance-covariance matrices.
Constraint: nvar ≥ 1.
4: $\quad \operatorname{ing}(\mathbf{n})$ - INTEGER array
$\operatorname{ing}(k)$ indicates to which group the k th observation belongs, for $k=1,2, \ldots, n$.
Constraint: $1 \leq \mathbf{i n g}(k) \leq \mathbf{n g}$, for $k=1,2, \ldots, n$
The values of ing must be such that each group has at least nvar members.
5: ng - INTEGER
The number of groups, n_{g}.
Constraint: $\mathbf{n g} \geq 2$.

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the dimension of the array ing and the first dimension of the array \mathbf{x}. (An error is raised if these dimensions are not equal.)
n, the number of observations.
Constraint: $\mathbf{n} \geq 1$.

2: $\quad \mathbf{m}$ - INTEGER
Default: the dimension of the array isx and the second dimension of the array \mathbf{x}. (An error is raised if these dimensions are not equal.)
The number of variables in the data array \mathbf{x}.
Constraint: $\mathbf{m} \geq$ nvar.

3: $\quad \mathbf{w t}(:)$ - REAL (KIND=nag_wp) array
The dimension of the array $\mathbf{w t}$ must be at least \mathbf{n} if weight $=$ ' W ', and at least 1 otherwise
If weight $=$ ' W ' the first n elements of wt must contain the weights to be used in the analysis and the effective number of observations for a group is the sum of the weights of the observations in that group. If $\mathbf{w t}(k)=0.0$ the k th observation is excluded from the calculations.

If weight $=$ ' U ', wt is not referenced and the effective number of observations for a group is the number of observations in that group.
Constraint: if weight $=$ ' W^{\prime}, $\mathbf{w t}(k) \geq 0.0$, for $k=1,2, \ldots, n$.

5.3 Output Parameters

```
nig(ng) - INTEGER array
```

$\boldsymbol{n i g}(j)$ contains the number of observations in the j th group, for $j=1,2, \ldots, n_{g}$.
2: $\quad \mathbf{g m n}(l d g m n$, nvar $)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
The j th row of gmn contains the means of the p selected variables for the j th group, for $j=1,2, \ldots, n_{g}$.
$\operatorname{det}(\mathbf{n g})$ - REAL (KIND=nag_wp) array
The logarithm of the determinants of the within-group variance-covariance matrices.
4: $\quad \mathbf{g c}((\mathbf{n g}+\mathbf{1}) \times \mathbf{n v a r} \times(\mathbf{n v a r}+\mathbf{1}) / \mathbf{2})-$ REAL (KIND=$=$ nag_wp $)$ array
The first $p(p+1) / 2$ elements of gc contain R and the remaining n_{g} blocks of $p(p+1) / 2$ elements contain the R_{j} matrices. All are stored in packed form by columns.
stat - REAL (KIND=nag_wp)
The likelihood-ratio test statistic, G.
6: $\quad \mathbf{d f}-$ REAL (KIND $=$ nag_wp $)$
The degrees of freedom for the distribution of G.
sig - REAL (KIND=nag_wp)
The significance level for G.
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail $=1$

On entry, nvar <1,
or $\quad \mathbf{n}<1$,
or $\quad \mathbf{n g}<2$,
or $\quad \mathbf{m}<\mathbf{n v a r}$,
or $\quad l d x<\mathbf{n}$,
or $\quad l d g m n<\mathbf{n g}$,
or weight \neq ' U ' or ' W '.
ifail $=2$
On entry, weight $=$ ' W ' and a value of $\mathbf{w t}<0.0$.

ifail $=3$

On entry, there are not exactly nvar elements of isx >0,
or a value of ing is not in the range 1 to ng,
or the effective number of observations for a group is less than 1,
or a group has less than nvar members.
ifail $=4$
R or one of the R_{j} is not of full rank.
ifail $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
ifail $=-399$
Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

The accuracy is dependent on the accuracy of the computation of the $Q R$ decomposition. See nag_lapack_dgeqrf (f08ae) for further details.

8 Further Comments

The time taken will be approximately proportional to $n p^{2}$.

9 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr}$) of two steroid metabolites. Observations for a total of 21 patients are input and the statistics computed by nag_mv_discrim (g03da). The printed results show that there is evidence that the within-group variance-covariance matrices are not equal.

9.1 Program Text

```
    function g03da_example
fprintf('g03da example results\n\n');
x = [1.1314, 2.4596;
    1.0986, 0.2624;
    0.6419, -2.3026;
    1.3350, -3.2189;
    1.4110, 0.0953;
    0.6419, -0.9163;
    2.1163, 0.0000;
    1.3350, -1.6094;
    1.3610, -0.5108;
    2.0541, 0.1823;
    2.2083, -0.5108;
    2.7344, 1.2809;
    2.0412, 0.4700;
    1.8718, -0.9163;
    1.7405, -0.9163;
    2.6101, 0.4700;
    2.3224, 1.8563;
    2.2192, 2.0669;
    2.2618, 1.1314;
    3.9853, 0.9163;
    2.7600, 2.0281];
[n,m] = size(x);
isx = ones(m,1,nag_int_name);
nvar = nag_int(m);
ing = ones(n,1,nag_int_name);
ing(7:16) = nag_int(2);
ing(17:n) = nag_int(3);
ng = nag_int(3);
[nig, gmean, det, gc, stat, df, sig, ifail] = ...
    g03da( ...
    x, isx, nvar, ing, ng);
mtitle = 'Group means';
matrix = 'General';
diag = ' ';
[ifail] = x04ca( ...
                                    matrix, diag, gmean, mtitle);
fprintf('\nLog of determinants\n\n');
fprintf('%10.4f%10.4f%10.4f\n\n', det);
fprintf(' Stat = %7.4f\n', stat);
fprintf(' DF = %7.4f\n', df);
fprintf(' SIG = %7.4f\n', sig);
```


9.2 Program Results

g03da example results
Group means

	1	2
1	1.0433	-0.6034
2	2.0073	-0.2060
3	2.7097	1.5998

Log of determinants
$-0.8273-3.0460 \quad-2.2877$

Stat $=19.2410$
DF $=6.0000$
SIG $=0.0038$

