
NAG Toolbox

nag_mv_prin_comp (g03aa)

1 Purpose

nag_mv_prin_comp (g03aa) performs a principal component analysis on a data matrix; both the
principal component loadings and the principal component scores are returned.

2 Syntax

[ss, ee, pp, vv, iiffaaiill] = nag_mv_prin_comp(mmaattrriixx, ssttdd, xx, iissxx, ss, nnvvaarr, ’n’, nn, ’m’,
mm, ’wt’, wwtt)

[ss, ee, pp, vv, iiffaaiill] = g03aa(mmaattrriixx, ssttdd, xx, iissxx, ss, nnvvaarr, ’n’, nn, ’m’, mm, ’wt’,
wwtt)

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 24: weight was removed from the interface; wt was made optional

At Mark 22: n was made optional.

3 Description

Let X be an n by p data matrix of n observations on p variables x1; x2; . . . ; xp and let the p by p
variance-covariance matrix of x1; x2; . . . ; xp be S. A vector a1 of length p is found such that:

aT1Sa1 is maximized subject to aT1a1 ¼ 1:

The variable z1 ¼
Xp
i¼1

a1ixi is known as the first principal component and gives the linear combination

of the variables that gives the maximum variation. A second principal component, z2 ¼
Xp
i¼1

a2ixi, is

found such that:

aT2Sa2 is maximized subject to aT2a2 ¼ 1and aT2a1 ¼ 0:

This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors a1; a2; . . . ; ap, are the eigenvectors of the matrix S and associated with each eigenvector is
the eigenvalue, �2

i . The value of �2
i =
P

�2
i gives the proportion of variation explained by the ith

principal component. Alternatively, the ai's can be considered as the right singular vectors in a singular
value decomposition with singular values �i of the data matrix centred about its mean and scaled by
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þp

, Xs. This latter approach is used in nag_mv_prin_comp (g03aa), with

Xs ¼ V �P 0

where � is a diagonal matrix with elements �i, P is the p by p matrix with columns ai and V is an n by
p matrix with V 0V ¼ I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a dataset, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original dataset.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected, then a test of the
equality of the remaining p� k eigenvalues is
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n� 2pþ 5ð Þ=6ð Þ �
Xp
i¼kþ1

log �2
i

� �þ p� kð Þlog
Xp
i¼kþ1

�2
i = p� kð Þ

 !( )

which has, asymptotically, a �2-distribution with 1
2 p� k� 1ð Þ p� kþ 2ð Þ degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be
considered then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardized sums of squares and cross-products matrix may be used. In the last case S is

replaced by ��1
2S��1

2 for a diagonal matrix � with positive elements. If the correlation matrix is used,
the �2 approximation for the statistic given above is not valid.

The principal component scores, F , are the values of the principal component variables for the
observations. These can be standardized so that the variance of these scores for each principal
component is 1:0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount

ffiffiffiffiffi
wi

p
, where wi is the weight for the ith observation.
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2–25
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Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Parameters

5.1 Compulsory Input Parameters

1: matrix – CHARACTER(1)

Indicates for which type of matrix the principal component analysis is to be carried out.

matrix ¼ C
It is for the correlation matrix.

matrix ¼ S
It is for a standardized matrix, with standardizations given by s.

matrix ¼ U
It is for the sums of squares and cross-products matrix.

matrix ¼ V
It is for the variance-covariance matrix.

Constraint: matrix ¼ C , S , U or V .

2: std – CHARACTER(1)

Indicates if the principal component scores are to be standardized.

std ¼ S
The principal component scores are standardized so that F 0F ¼ I, i.e., F ¼ XsP��1 ¼ V .

std ¼ U
The principal component scores are unstandardized, i.e., F ¼ XsP ¼ V �.
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std ¼ Z
The principal component scores are standardized so that they have unit variance.

std ¼ E
The principal component scores are standardized so that they have variance equal to the
corresponding eigenvalue.

Constraint: std ¼ E , S , U or Z .

3: xðldx;mÞ – REAL (KIND=nag_wp) array

ldx, the first dimension of the array, must satisfy the constraint ldx � n.

xði; jÞ must contain the ith observation for the jth variable, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ;m.

4: isxðmÞ – INTEGER array

isxðjÞ indicates whether or not the jth variable is to be included in the analysis.

If isxðjÞ > 0, the variable contained in the jth column of x is included in the principal component
analysis, for j ¼ 1; 2; . . . ;m.

Constraint: isxðjÞ > 0 for nvar values of j.

5: sðmÞ – REAL (KIND=nag_wp) array

The standardizations to be used, if any.

If matrix ¼ S , the first m elements of s must contain the standardization coefficients, the
diagonal elements of �.

Constraint: if isxðjÞ > 0, sðjÞ > 0:0, for j ¼ 1; 2; . . . ;m.

6: nvar – INTEGER

p, the number of variables in the principal component analysis.

Constraint: 1 � nvar � min n� 1;mð Þ.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the first dimension of the array x.

n, the number of observations.

Constraint: n � 2.

2: m – INTEGER

Default: the dimension of the arrays isx, s and the second dimension of the array x. (An error is
raised if these dimensions are not equal.)

m, the number of variables in the data matrix.

Constraint: m � 1.

3: wtð:Þ – REAL (KIND=nag_wp) array

The dimension of the array wt must be at least n if weight ¼ W , and at least 1 otherwise

If weight ¼ W , the first n elements of wt must contain the weights to be used in the principal
component analysis.

If wtðiÞ ¼ 0:0, the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.
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If weight ¼ U , wt is not referenced and the effective number of observations is n.

Constraints:

wtðiÞ � 0:0, for i ¼ 1; 2; . . . ; n;
the sum of weights � nvarþ 1.

5.3 Output Parameters

1: sðmÞ – REAL (KIND=nag_wp) array

If matrix ¼ S , s is unchanged on exit.

If matrix ¼ C , s contains the variances of the selected variables. sðjÞ contains the variance of
the variable in the jth column of x if isxðjÞ > 0.

If matrix ¼ U or V , s is not referenced.

2: eðlde; 6Þ – REAL (KIND=nag_wp) array

The statistics of the principal component analysis.

eði; 1Þ
The eigenvalues associated with the ith principal component, �2

i , for i ¼ 1; 2; . . . ; p.

eði; 2Þ
The proportion of variation explained by the ith principal component, for i ¼ 1; 2; . . . ; p.

eði; 3Þ
The cumulative proportion of variation explained by the first ith principal components, for
i ¼ 1; 2; . . . ; p.

eði; 4Þ
The �2 statistics, for i ¼ 1; 2; . . . ; p.

eði; 5Þ
The degrees of freedom for the �2 statistics, for i ¼ 1; 2; . . . ; p.

If matrix 6¼ C , eði; 6Þ contains significance level for the �2 statistic, for i ¼ 1; 2; . . . ; p.

If matrix ¼ C , eði; 6Þ is returned as zero.

3: pðldp;nvarÞ – REAL (KIND=nag_wp) array

The first nvar columns of p contain the principal component loadings, ai. The jth column of p
contains the nvar coefficients for the jth principal component.

4: vðldv; nvarÞ – REAL (KIND=nag_wp) array

The first nvar columns of v contain the principal component scores. The jth column of v
contains the n scores for the jth principal component.

If weight ¼ W , any rows for which wtðiÞ is zero will be set to zero.

5: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, m < 1,
or n < 2,
or nvar < 1,
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or nvar > m,
or nvar � n,
or ldx < n,
or ldv < n,
or ldp < nvar,
or lde < nvar,
or matrix 6¼ C , S , U or V ,
or std 6¼ S , U , Z or E ,
or weight 6¼ U or W.

ifail ¼ 2

On entry, weight ¼ W and a value of wt < 0:0.

ifail ¼ 3

On entry, there are not nvar values of isx > 0,
or weight ¼ W and the effective number of observations is less than nvarþ 1.

ifail ¼ 4

On entry, sðjÞ � 0:0 for some j ¼ 1; 2; . . . ;m, when matrix ¼ S and isxðjÞ > 0.

ifail ¼ 5

The singular value decomposition has failed to converge. This is an unlikely error exit.

ifail ¼ 6 (warning)

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

As nag_mv_prin_comp (g03aa) uses a singular value decomposition of the data matrix, it will be less
affected by ill-conditioned problems than traditional methods using the eigenvalue decomposition of the
variance-covariance matrix.

8 Further Comments

None.

9 Example

A dataset is taken from Cooley and Lohnes (1971), it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and the
principal component scores requested. The principal component scores are standardized so that they
have variance equal to the corresponding eigenvalue.
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9.1 Program Text

function g03aa_example

fprintf(’g03aa example results\n\n’);

x = [7, 4, 3;
4, 1, 8;
6, 3, 5;
8, 6, 1;
8, 5, 7;
7, 2, 9;
5, 3, 3;
9, 5, 8;
7, 4, 5;
8, 2, 2];

n = size(x,2);

matrix = ’V’;
std = ’E’;
isx = ones(n,1,nag_int_name);
s = zeros(n,1);
nvar = nag_int(n);

[s, e, p, v, ifail] = g03aa( ...
matrix, std, x, isx, s, nvar);

fprintf(’Eigenvalues Percentage Cumulative Chisq DF Sig\n’);
fprintf(’ variation variation\n\n’);
fprintf(’%11.4f%12.4f%12.4f%10.4f%8.1f%8.4f\n’,e’);
fprintf(’\n’);

mtitle = ’Principal component loadings’;
matrix = ’General’;
diag = ’ ’;

[ifail] = x04ca( ...
matrix, diag, p, mtitle);

fprintf(’\n’);
mtitle = ’Principal component scores’;
[ifail] = x04ca( ...

matrix, diag, v, mtitle);

fig1 = figure;
subplot(1,2,1);
xlabel(’PC 1’);
ylabel(’PC 2’);
title({’Observation numbers’, ’for PC 1 and PC 2’});
axis([-5 5 -3 4]);
for j = 1:size(x,1)

ch = sprintf(’%d’,j);
text(v(j,1),v(j,2),ch);

end
subplot(1,2,2);
bar(e(:,2));
ax = gca;
ax.XTickLabel = {’PC 1’,’PC 2’,’PC 3’};
xlabel(’PC 1’);
ylabel(’Percentage variation’);
title(’Scree plot’);

9.2 Program Results

g03aa example results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation

8.2739 0.6515 0.6515 8.6127 5.0 0.1255
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3.6761 0.2895 0.9410 4.1183 2.0 0.1276
0.7499 0.0590 1.0000 0.0000 0.0 0.0000

Principal component loadings
1 2 3

1 -0.1376 0.6990 -0.7017
2 -0.2505 0.6609 0.7075
3 0.9583 0.2731 0.0842

Principal component scores
1 2 3

1 -2.1514 -0.1731 0.1068
2 3.8042 -2.8875 0.5104
3 0.1532 -0.9869 0.2694
4 -4.7065 1.3015 0.6517
5 1.2938 2.2791 0.4492
6 4.0993 0.1436 -0.8031
7 -1.6258 -2.2321 0.8028
8 2.1145 3.2512 -0.1684
9 -0.2348 0.3730 0.2751

10 -2.7464 -1.0689 -2.0940
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