NAG Toolbox

nag sum fft real 1d multi rfmt (c06fp)

1 Purpose

nag_sum_fft_real_1d_multi_rfmt (c06fp) computes the discrete Fourier transforms of m sequences, each containing n real data values. This function is designed to be particularly efficient on vector processors.

2 Syntax

```
[x, trig, ifail] = nag_sum_fft_real_ld_multi_rfmt(m, n, x, init, trig)
[x, trig, ifail] = c06fp(m, n, x, init, trig)
```

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, nag_sum_fft_real_ld_multi_rfmt (c06fp) simultaneously calculates the Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1 \text{ and } p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

The transformed values \hat{z}_k^p are complex, but for each value of p the \hat{z}_k^p form a Hermitian sequence (i.e., \hat{z}_{n-k}^p is the complex conjugate of \hat{z}_k^p), so they are completely determined by mn real numbers (see also the C06 Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term:

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j^p \times \exp\left(+i\frac{2\pi jk}{n}\right).$$

To compute this form, this function should be followed by forming the complex conjugates of the \hat{z}_k^p ; that is x(k) = -x(k), for $k = (n/2 + 1) \times m + 1, \dots, m \times n$.

The function uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is provided for the factors 2, 3, 4, 5 and 6. This function is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

Mark 25 c06fp.1

5 Parameters

5.1 Compulsory Input Parameters

1: **m** – INTEGER

m, the number of sequences to be transformed.

Constraint: $\mathbf{m} \geq 1$.

2: $\mathbf{n} - \text{INTEGER}$

n, the number of real values in each sequence.

Constraint: $\mathbf{n} \geq 1$.

3:
$$\mathbf{x}(\mathbf{m} \times \mathbf{n}) - \text{REAL (KIND=nag wp) array}$$

The data must be stored in \mathbf{x} as if in a two-dimensional array of dimension $(1:\mathbf{m},0:\mathbf{n}-1)$; each of the m sequences is stored in a **row** of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then the mn elements of the array \mathbf{x} must contain the values

$$x_0^1, x_0^2, \dots, x_0^m, x_1^1, x_1^2, \dots, x_1^m, \dots, x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m$$

4: **init** – CHARACTER(1)

Indicates whether trigonometric coefficients are to be calculated.

$$init = 'I'$$

Calculate the required trigonometric coefficients for the given value of n, and store in the array **trig**.

$$init = 'S' \text{ or 'R'}$$

The required trigonometric coefficients are assumed to have been calculated and stored in the array \mathbf{trig} in a prior call to one of $nag_sum_fft_real_1d_multi_rfmt$ (c06fp), $nag_sum_fft_hermitian_1d_multi_rfmt$ (c06fq) or $nag_sum_fft_complex_1d_multi_rfmt$ (c06fr). The function performs a simple check that the current value of n is consistent with the values stored in \mathbf{trig} .

Constraint: init = 'I', 'S' or 'R'.

5:
$$trig(2 \times n) - REAL (KIND=nag_wp) array$$

If **init** = 'S' or 'R', **trig** must contain the required trigonometric coefficients that have been previously calculated. Otherwise **trig** need not be set.

5.2 Optional Input Parameters

None.

5.3 Output Parameters

1:
$$\mathbf{x}(\mathbf{m} \times \mathbf{n}) - \text{REAL (KIND=nag wp) array}$$

The m discrete Fourier transforms stored as if in a two-dimensional array of dimension $(1:\mathbf{m},0:\mathbf{n}-1)$. Each of the m transforms is stored in a **row** of the array in Hermitian form, overwriting the corresponding original sequence. If the n components of the discrete Fourier transform \hat{z}_k^p are written as $a_k^p + ib_k^p$, then for $0 \le k \le n/2$, a_k^p is contained in $\mathbf{x}(p,k)$, and for $1 \le k \le (n-1)/2$, b_k^p is contained in $\mathbf{x}(p,n-k)$. (See also Section 2.1.2 in the C06 Chapter Introduction.)

2: $trig(2 \times n) - REAL (KIND=nag wp) array$

Contains the required coefficients (computed by the function if init = 'I').

c06fp.2 Mark 25

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, $\mathbf{m} < 1$.

ifail = 2

On entry, $\mathbf{n} < 1$.

ifail = 3

On entry, **init** \neq 'I', 'S' or 'R'.

ifail = 4

Not used at this Mark.

ifail = 5

On entry, init = 'S' or 'R', but the array trig and the current value of n are inconsistent.

ifail = 6

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by nag_sum_fft_real_1d_multi_rfmt (c06fp) is approximately proportional to $nm\log(n)$, but also depends on the factors of n. nag_sum_fft_real_1d_multi_rfmt (c06fp) is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This example reads in sequences of real data values and prints their discrete Fourier transforms (as computed by nag_sum_fft_real_1d_multi_rfmt (c06fp)). The Fourier transforms are expanded into full complex form using and printed. Inverse transforms are then calculated by conjugating and calling nag_sum_fft_hermitian_1d_multi_rfmt (c06fq) showing that the original sequences are restored.

Mark 25 c06fp.3

9.1 Program Text

```
function c06fp_example
fprintf('c06fp example results\n\n');
% 3 real sequences stored as rows
m = nag_int(3);
n = nag_int(6);
x = [0.3854 \ 0.6772 \ 0.1138 \ 0.6751 \ 0.6362 \ 0.1424;
     0.5417 0.2983 0.1181 0.7255 0.8638 0.8723;
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815];
% Transform to get Hermitian sequences
init = 'Initial';
trig = zeros(2*n,1);
[xt, trig, ifail] = c06fp(m, n, x, init, trig);
disp('Discrete Fourier transforms in Hermitian format:');
disp(xt);
for j = 1:m
  zt(j,:) = nag_herm2complex(xt(j,:));
title = 'Discrete Fourier transforms in full complex format:';
[ifail] = x04da('General','Non-unit', zt, title);
% Restore data by conjugation and back transform
init = 'Subsequent';
nd = double(n);
xt(1:m,floor(nd/2)+2:n) = -xt(1:m,floor(nd/2)+2:n);
[xr, trig, ifail] = c06fq(m, n, xt, init, trig);
fprintf('\n');
disp('Original data as restored by inverse transform:');
disp(xr);
function [z] = nag_herm2complex(x);
  n = size(x,2);
  z(1) = complex(x(1));
  for j = 2:floor((n-1)/2) + 1
    z(j) = x(j) + i*x(n-j+2);
    z(n-j+2) = x(j) - i*x(n-j+2);
  end
  if (mod(n, 2) == 0)
    z(n/2+1) = complex(x(n/2+1));
```

9.2 Program Results

cO6fp example results

```
Discrete Fourier transforms in Hermitian format:
    1.0737
           -0.1041
                     0.1126 -0.1467 -0.3738
                                                    -0.0044
    1.3961
            -0.0365
                       0.0780
                                -0.1521
                                          -0.0607
                                                    0.4666
    1.1237
             0.0914
                       0.3936
                                0.1530
                                          0.3458
                                                    -0.0508
Discrete Fourier transforms in full complex format:
                                                        5
       1.0737
                 -0.1041
                             0.1126
                                       -0.1467
                                                   0.1126
                                                            -0.1041
 1
       0.0000
                 -0.0044
                                        0.0000
                            -0.3738
                                                   0.3738
                                                              0.0044
 2
       1.3961
                 -0.0365
                            0.0780
                                       -0.1521
                                                   0.0780
                                                             -0.0365
                                       0.0000
       0.0000
                 0.4666
                            -0.0607
                                                   0.0607
                                                             -0.4666
 3
       1.1237
                  0.0914
                            0.3936
                                       0.1530
                                                  0.3936
                                                             0.0914
                                                  -0.3458
       0.0000
                 -0.0508
                             0.3458
                                        0.0000
                                                              0.0508
```

c06fp.4 Mark 25

Original data	as restore	ed by inver	se transf	orm:	
0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

Mark 25 c06fp.5 (last)