C06 — Summation of Series c06fp

NAG Toolbox

nag_sum_f{ft real 1d multi_rfmt (c06fp)

1 Purpose

nag sum_fft real 1d multi rfmt (c06fp) computes the discrete Fourier transforms of m sequences,
each containing n real data values. This function is designed to be particularly efficient on vector
processors.

2 Syntax
[x, trig, ifail] = nag_sum_ fft_real_1d multi_rfmt(m, n, x, init, trigqg)
[x, trig, ifail] = cO6fp(m, n, x, init, trig)

3 Description
Given m sequences of n real data values xf, for j=0,1,...,n—1 and p=1,2,...,m,
nag sum_fft real 1d multi rfmt (cO6fp) simultaneously calculates the Fourier transforms of all the
sequences defined by

n—1 <_ 27T]k

1
%:%;xixexp - >, k=0,1,...,.n—land p=1,2,...,m.

(Note the scale factor # in this definition.)

The transformed values z} are complex, but for each value of p the Z] form a Hermitian sequence (i.e.,
ZP_, is the complex conjugate of z}), so they are completely determined by mn real numbers (see also
the C06 Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term:
1 2wk
2= —Zw” x exp| +i .
k J
\/ﬁjzo n

To compute this form, this function should be followed by forming the complex conjugates of the Z7;
that is z(k) = —z(k), for k=(n/2+ 1) xm+1,...,m x n.

The function uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known
as the Stockham self-sorting algorithm, which is described in Temperton (1983). Special coding is
provided for the factors 2, 3, 4, 5 and 6. This function is designed to be particularly efficient on vector
processors, and it becomes especially fast as m, the number of transforms to be computed in parallel,
increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice—Hall
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

Mark 25 c06fp.1

c06fp

5.1

5.2

5.3

NAG Toolbox for MATLAB Manual

Parameters

Compulsory Input Parameters

m — INTEGER

m, the number of sequences to be transformed.

Constraint: m > 1.

n — INTEGER
n, the number of real values in each sequence.

Constraint: n > 1.

x(m x n) — REAL (KIND=nag_wp) array

The data must be stored in x as if in a two-dimensional array of dimension (1:m,0:n— 1);
each of the m sequences is stored in a row of the array. In other words, if the data values of the
pth sequence to be transformed are denoted by x‘?, for =0,1,...,n — 1, then the mn elements
of the array x must contain the values

1,2 m 1 2 m 1 2 m
T Ly ooy Ly 3 T LYy e e oy T yee e s Ly T s vy Ty

init — CHARACTER(1)

Indicates whether trigonometric coefficients are to be calculated.

init ='T'
Calculate the required trigonometric coefficients for the given value of n, and store in the
array trig.

init ='S' or 'R’
The required trigonometric coefficients are assumed to have been calculated and stored in
the array trig in a prior call to one of nag sum fft real 1d multi rfmt (c06fp),
nag_sum_fft hermitian_1d multi rfmt (c06fq) or nag sum fft complex 1d multi rfmt

(c06fr). The function performs a simple check that the current value of n is consistent
with the values stored in trig.

Constraint: init ='T", 'S' or 'R’.

trig(2 x n) — REAL (KIND=nag_wp) array

If init ='S' or 'R, trig must contain the required trigonometric coefficients that have been
previously calculated. Otherwise trig need not be set.

Optional Input Parameters

None.

Output Parameters
x(m x n) — REAL (KIND=nag_wp) array

The m discrete Fourier transforms stored as if in a two-dimensional array of dimension
(1 :m,0:n—1). Each of the m transforms is stored in a row of the array in Hermitian form,
overwriting the corresponding original sequence. If the n components of the discrete Fourier
transform 2} are written as aj + @b}, then for 0 <k <n/2, af is contained in x(p, k), and for
1 <k<(n—-1)/2, b} is contained in x(p,n — k). (See also Section 2.1.2 in the C06 Chapter

Introduction.)

trig(2 x n) — REAL (KIND=nag_wp) array

Contains the required coefficients (computed by the function if init ='T").

c06fp.2 Mark 25

C06 — Summation of Series c06fp

3: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings
Errors or warnings detected by the function:
ifail = 1

On entry, m < 1.
ifail = 2

On entry, n < 1.
ifail = 3

On entry, init #'T', 'S' or 'R".
ifail =4

Not used at this Mark.
ifail = 5

On entry, init ='S' or 'R, but the array trig and the current value of n are inconsistent.
ifail = 6

An unexpected error has occurred in an internal call. Check all function calls and array
dimensions. Seek expert help.

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.
ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by nag_sum_fft real 1d multi_rfmt (c06fp) is approximately proportional to nmlog (n),
but also depends on the factors of n. nag sum_ fft real 1d multi rfmt (c06fp) is fastest if the only
prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime
factors.

9 Example

This example reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by nag_sum_fft real 1d multi_rfmt (c06fp)). The Fourier transforms are expanded into full
complex form using and printed. Inverse transforms are then calculated by conjugating and calling
nag_sum_fft hermitian 1d multi_rfmt (c06fq) showing that the original sequences are restored.

Mark 25 c06fp.3

c06fp

9.1 Program Text

function cO6fp_example

fprintf(’cO06fp example results\n\n’);

% 3 real sequences stored as rows

m = nag_int(3);

n = nag_int (6);

X [0.3854 0.6772 0.1138 0.6751 0.6362 0.1424;
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723;
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815];

% Transform to get Hermitian sequences

init = ’'Initial’;

trig = zeros(2*n,1);

[xt, trig, ifail] = cO6fp(m, n, x, init, trig);

disp(’Discrete Fourier transforms in Hermitian format:

disp(xt);

for j = 1l:m

zt(j,:) = nag_herm2complex(xt(j,:));
end
title = ’'Discrete Fourier transforms in full complex

[ifail] = x04da(’General’,’Non-unit’, zt, title);

o
o

Restore data by conjugation and back transform

init = ’'Subsequent’;

nd = double(n);

xt(l:m,floor(nd/2)+2:n) = -xt(l:m,floor(nd/2)+2:n);
[xr, trig, ifail] = cOe6fg(m, n, xt, init, trig);

fprintf(’'\n’);
disp(’Original data as restored by inverse transform:
disp(xr);

function
n
z(1)

[z] = nag_herm2complex(x);
size(x,2);
complex (x(1));
for j 2:floor((n-1)/2) + 1
z(j) = x(j) + i*x(n-j+2);
z(n-j+2) x(3) - i*x(n-j+2);
end
if

(mod(n,2)==0)
z(n/2+1) complex(x(n/2+1));
end

9.2 Program Results

cO6fp example results

Discrete Fourier transforms in Hermitian format:

1.0737 -0.1041 0.1126 -0.1467 -0.3738
1.3961 -0.0365 0.0780 -0.1521 -0.0607
1.1237 0.0914 0.3936 0.1530 0.3458
Discrete Fourier transforms in full complex format:
1 2 3 4
1 1.0737 -0.1041 0.1126 -0.1467 0
0.0000 -0.0044 -0.3738 0.0000 0
2 1.3961 -0.0365 0.0780 -0.1521 0
0.0000 0.4666 -0.0607 0.0000 0
3 1.1237 0.0914 0.3936 0.1530 0
0.0000 -0.0508 0.3458 0.0000 -0

c06fp.4

NAG Toolbox for MATLAB Manual

format:"’;

") ;

-0.0044
0.4666
-0.0508

5 6
.1126 -0.1041
.3738 0.0044
.0780 -0.0365
.0607 -0.4666
.3936 0.0914
.3458 0.0508

Mark 25

C06 — Summation of Series c06fp

Original data as restored by inverse transform:

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Mark 25 c06fp.5 (last)

	nag_sum_fft_real_1d_multi_rfmt (c06fp)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Brigham (1974)
	Temperton (1983)

	5 Parameters
	5.1 Compulsory Input Parameters
	m
	n
	x
	init
	trig

	5.2 Optional Input Parameters
	5.3 Output Parameters
	x
	trig
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=3
	ifail=4
	ifail=5
	ifail=6
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

