NAG Toolbox

nag sum fft hermitian 1d rfmt (c06fb)

1 Purpose

nag_sum_fft_hermitian_1d_rfmt (c06fb) calculates the discrete Fourier transform of a Hermitian sequence of n complex data values (using a work array for extra speed).

2 Syntax

3 Description

Given a Hermitian sequence of n complex data values z_j (i.e., a sequence such that z_0 is real and z_{n-j} is the complex conjugate of z_j , for $j=1,2,\ldots,n-1$), nag_sum_fft_hermitian_1d_rfmt (c06fb) calculates their discrete Fourier transform defined by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_k are purely real (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be preceded by forming the complex conjugates of the \hat{z}_k ; that is, x(k) = -x(k), for k = n/2 + 2, ..., n.

nag_sum_fft_hermitian_1d_rfmt (c06fb) uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1:
$$\mathbf{x}(\mathbf{n}) - \text{REAL}$$
 (KIND=nag wp) array

The sequence to be transformed stored in Hermitian form. If the data values z_j are written as $x_j + iy_j$, and if \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_fft_hermitian_1d_rfmt (c06fb) is called, then for $0 \le j \le n/2$, x_j is contained in $\mathbf{x}(j)$, and for $1 \le j \le (n-1)/2$, y_j is contained in $\mathbf{x}(n-j)$. (See also Section 2.1.2 in the C06 Chapter Introduction and Section 10.)

Mark 25 c06fb.1

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the dimension of the array \mathbf{x} .

n, the number of data values. The largest prime factor of **n** must not exceed 19, and the total number of prime factors of **n**, counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

5.3 Output Parameters

1: $\mathbf{x}(\mathbf{n}) - \text{REAL (KIND=nag_wp) array}$

The components of the discrete Fourier transform \hat{x}_k . If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_fft_hermitian_1d_rfmt (c06fb) is called, then \hat{x}_k is stored in $\mathbf{x}(k)$, for $k=0,1,\ldots,n-1$.

2: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

At least one of the prime factors of \mathbf{n} is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} < 1$.

ifail = 4

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

c06fb.2 Mark 25

8 Further Comments

The time taken is approximately proportional to $n \times \log(n)$, but also depends on the factorization of n. nag_sum_fft_hermitian_1d_rfmt (c06fb) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This example reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by nag_sum_fft_hermitian_ld_rfmt (c06fb)) is printed out. It then performs an inverse transform using nag_sum_fft_real_ld_rfmt (c06fa) and conjugation, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

```
function c06fb_example
fprintf('c06fb example results\n\n');
% Hermitian sequence x, stored in Hermitian form.
n = 7;
x = [0.34907; 0.5489;
                          0.74776;
                                     0.94459;
     1.1385;
               1.3285;
                          1.5137];
% DFT of x
[xtrans, ifail] = c06fa(x);
% Display in full complex form
z = nag_herm2complex(xtrans);
disp('Discrete Fourier Transform of x:');
disp(transpose(z));
% Inverse DFT of xtrans
[xres] = nag_hermconj(xtrans);
[xres, ifail] = c06fb(xres);
fprintf('Original sequence as restored by inverse transform\n');
fprintf('
                Original
                           Restored\n');
for j = 1:n
  fprintf('%3d
                 %7.4f
                           7.4f(n',j, x(j), xres(j));
end
function [z] = nag_herm2complex(x);
  n = nag_int(size(x,1));
  z(1) = complex(x(1));
  for j = 2:floor((n-1)/2) + 1
    z(\bar{j}) = x(j) + i*x(n-j+2);
    z(n-j+2) = x(j) - i*x(n-j+2);
  if (mod(n, 2) == 0)
    z(n/2+1) = complex(x(n/2+1));
  end
function [xconj] = nag_hermconj(x);
  n = size(x,1);
  n2 = floor((n+4)/2);
  xconj = x;
for j = n2:n
    xconj(j) = -x(j);
  end
```

Mark 25 c06fb.3

9.2 Program Results

```
cO6fb example results
```

```
Discrete Fourier Transform of x:
```

- 2.4836 + 0.0000i
- -0.2660 + 0.5309i -0.2577 + 0.2030i -0.2564 + 0.0581i

- -0.2564 0.0581i -0.2577 0.2030i -0.2660 0.5309i

Original sequence as restored by inverse transform $% \left(1\right) =\left(1\right) \left(1\right) \left($

	Original	Restored
1	0.3491	0.3491
2	0.5489	0.5489
3	0.7478	0.7478
4	0.9446	0.9446
5	1.1385	1.1385
6	1.3285	1.3285
7	1.5137	1.5137

Mark 25 c06fb.4 (last)