NAG Toolbox # nag sum convcorr real nowork (c06ek) ### 1 Purpose nag_sum_convcorr_real_nowork (c06ek) calculates the circular convolution or correlation of two real vectors of period n. (No extra workspace is required.) **Note**: This function is scheduled to be withdrawn, please see c06ek in Advice on Replacement Calls for Withdrawn/Superseded Routines.. # 2 Syntax ### 3 Description nag_sum_convcorr_real_nowork (c06ek) computes: if job = 1, the discrete **convolution** of x and y, defined by $$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$ if job = 2, the discrete **correlation** of x and y defined by $$w_k = \sum_{j=0}^{n-1} x_j y_{k+j}.$$ Here x and y are real vectors, assumed to be periodic, with period n, i.e., $x_j = x_{j\pm n} = x_{j\pm 2n} = \dots$; z and w are then also periodic with period n. **Note:** this usage of the terms 'convolution' and 'correlation' is taken from Brigham (1974). The term 'convolution' is sometimes used to denote both these computations. If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences, i.e., $$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \text{ etc.},$$ then $\hat{z}_k = \sqrt{n}.\hat{x}_k\hat{y}_k$ and $\hat{w}_k = \sqrt{n}.\bar{x}_k\hat{y}_k$ (the bar denoting complex conjugate). This function calls the same auxiliary functions as $nag_sum_fft_real_1d_nowork$ (c06ea) and $nag_sum_fft_hermitian_1d_nowork$ (c06eb) to compute discrete Fourier transforms, and there are some restrictions on the value of n. #### 4 References Brigham E O (1974) The Fast Fourier Transform Prentice-Hall Mark 25 c06ek.1 #### 5 Parameters # 5.1 Compulsory Input Parameters 1: **job** – INTEGER The computation to be performed. $$\mathbf{job} = 1$$ $$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} \text{ (convolution)};$$ $$\mathbf{job} = 2$$ $$w_k = \sum_{j=0}^{n-1} x_j y_{k+j} \text{ (correlation)}.$$ Constraint: job = 1 or 2. 2: $\mathbf{x}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$ array The elements of one period of the vector x. If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_convcorr_real_nowork (c06ek) is called, then $\mathbf{x}(j)$ must contain x_j , for $j=0,1,\ldots,n-1$. 3: $y(n) - REAL (KIND=nag_wp) array$ The elements of one period of the vector y. If \mathbf{y} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_convcorr_real_nowork (c06ek) is called, then $\mathbf{y}(j)$ must contain y_j , for $j=0,1,\ldots,n-1$. #### 5.2 Optional Input Parameters 1: $\mathbf{n} - \text{INTEGER}$ Default: the dimension of the arrays \mathbf{x} , \mathbf{y} . (An error is raised if these dimensions are not equal.) n, the number of values in one period of the vectors \mathbf{x} and \mathbf{y} . Constraint: $\mathbf{n} > 1$. #### 5.3 Output Parameters 1: $\mathbf{x}(\mathbf{n}) - \text{REAL}$ (KIND=nag wp) array The corresponding elements of the discrete convolution or correlation. 2: y(n) - REAL (KIND=nag wp) array The discrete Fourier transform of the convolution or correlation returned in the array x; the transform is stored in Hermitian form. If the components of the transform are: $$\hat{Z}_k = a_k + ib_k \\ \hat{Z}_{n-k} = a_k - ib_k$$ $k = 0, 1, \dots n/2$ where b_0 and $b_{n/2}$ when n is even then $\mathbf{x}(k+1)$ holds a_k and $\mathbf{x}(n-k+1)$ holds nonzero b_k (see Section 2.1.2 in the C06 Chapter Introduction). 3: **ifail** – INTEGER **ifail** = 0 unless the function detects an error (see Section 5). c06ek.2 Mark 25 # 6 Error Indicators and Warnings Errors or warnings detected by the function: #### ifail = 1 At least one of the prime factors of \mathbf{n} is greater than 19. #### ifail = 2 **n** has more than 20 prime factors. ifail = 3 On entry, $\mathbf{n} < 1$. ifail = 4 On entry, **job** \neq 1 or 2. ifail = -99 An unexpected error has been triggered by this routine. Please contact NAG. **ifail** = -399 Your licence key may have expired or may not have been installed correctly. **ifail** = -999 Dynamic memory allocation failed. ### 7 Accuracy The results should be accurate to within a small multiple of the *machine precision*. #### 8 Further Comments The time taken is approximately proportional to $n \times \log(n)$, but also depends on the factorization of n. nag_sum_convcorr_real_nowork (c06ek) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2. On the other hand, nag_sum_convcorr_real_nowork (c06ek) is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, nag_sum_convcorr_real (c06fk) (which requires additional double workspace) is considerably faster. # 9 Example This example reads in the elements of one period of two real vectors x and y, and prints their discrete convolution and correlation (as computed by nag_sum_convcorr_real_nowork (c06ek)). In realistic computations the number of data values would be much larger. ### 9.1 Program Text ``` function c06ek_example fprintf('c06ek example results\n\n'); 1; 1; 0; 0; 1; 0; x = [1; 1; 01: y = [0.5; 0.5; 0.5; 0.5; 0; 0; 0; 0]; job = nag_int(1); [conv, tconv, ifail] = c06ek(job, x, y); ``` Mark 25 c06ek.3 ``` job = nag_int(2); [corr, tcorr, ifail] = c06ek(job, x, y); result = [conv corr]; disp('Convolution Correlation'); disp(result); ``` # 9.2 Program Results c06ek example results | Convolution | Correlation | | |-------------|-------------|--| | 0.5000 | 2.0000 | | | 1.0000 | 1.5000 | | | 1.5000 | 1.0000 | | | 2.0000 | 0.5000 | | | 2.0000 | 0.0000 | | | 1.5000 | 0.5000 | | | 1.0000 | 1.0000 | | | 0.5000 | 1.5000 | | | 0.0000 | 2.0000 | | | | | | c06ek.4 (last) Mark 25