NAG Toolbox

nag_sum_fft_hermitian_1d_nowork (c06eb)

1 Purpose

nag_sum_fft_hermitian_1d_nowork (c06eb) calculates the discrete Fourier transform of a Hermitian sequence of n complex data values. (No extra workspace required.)
Note: This function is scheduled to be withdrawn, please see c06eb in Advice on Replacement Calls for Withdrawn/Superseded Routines..

2 Syntax

```
[x, ifail] = nag_sum_fft_hermitian_1d_nowork(x, 'n', n)
[x, ifail] = c06eb(x, 'n', n)
```


3 Description

Given a Hermitian sequence of n complex data values z_{j} (i.e., a sequence such that z_{0} is real and z_{n-j} is the complex conjugate of z_{j}, for $j=1,2, \ldots, n-1$), nag_sum_fft_hermitian_1d_nowork (c06eb) calculates their discrete Fourier transform defined by

$$
\hat{x}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \times \exp \left(-i \frac{2 \pi j k}{n}\right), \quad k=0,1, \ldots, n-1 .
$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_{k} are purely real (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$
\hat{y}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \times \exp \left(+i \frac{2 \pi j k}{n}\right)
$$

this function should be preceded by a call of nag_sum_conjugate_hermitian_rfmt (c06gb) to form the complex conjugates of the z_{j}.
nag_sum_fft_hermitian_1d_nowork (c06eb) uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{x}(\mathbf{n})$ - REAL (KIND=nag_wp) array
The sequence to be transformed stored in Hermitian form. If the data values z_{j} are written as $x_{j}+i y_{j}$, and if \mathbf{x} is declared with bounds $(0: \mathbf{n}-1)$ in the function from which nag_sum_fft_hermitian_1d_nowork (c06eb) is called, then for $0 \leq j \leq n / 2, x_{j}$ is contained in $\mathbf{x}(j)$, and for $1 \leq j \leq(n-1) / 2, y_{j}$ is contained in $\mathbf{x}(n-j)$. (See also Section 2.1.2 in the C06 Chapter Introduction and Section 10.)

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the dimension of the array \mathbf{x}.
n, the number of data values. The largest prime factor of \mathbf{n} must not exceed 19 , and the total number of prime factors of \mathbf{n}, counting repetitions, must not exceed 20.
Constraint: $\mathbf{n}>1$.

5.3 Output Parameters

1: $\quad \mathbf{x}(\mathbf{n})-$ REAL (KIND=nag_wp) array
The components of the discrete Fourier transform \hat{x}_{k}. If \mathbf{x} is declared with bounds $(0: \mathbf{n}-1)$ in the function from which nag_sum_fft_hermitian_1d_nowork (c06eb) is called, then \hat{x}_{k} is stored in $\mathbf{x}(k)$, for $k=0,1, \ldots, n-1$.

2: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
At least one of the prime factors of \mathbf{n} is greater than 19.

ifail $=2$

n has more than 20 prime factors.

ifail $=3$

On entry, $\mathbf{n} \leq 1$.

ifail $=4$

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.
ifail $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
ifail $=-399$
Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log (n)$, but also depends on the factorization of n. nag_sum_fft_hermitian_1d_nowork (c06eb) is faster if the only prime factors of n are 2,3 or 5 ; and fastest of all if n is a power of 2 .

On the other hand, nag_sum_fft_hermitian_1d_nowork (c06eb) is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, nag_sum_fft_hermitian_1d_rfmt (c06fb) (which requires an additional n elements of workspace) is considerably faster.

9 Example

This example reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by nag_sum_fft_hermitian_1d_nowork (c06eb)) is printed out. It then performs an inverse transform using nag_sum_fft_real_1d_nowork (c06ea) and nag_sum_conjugate_hermitian_rfmt (c06gb), and prints the sequence so obtained alongside the original data values.

9.1 Program Text

```
    function c06eb_example
fprintf('cO6eb example results\n\n');
% Hernitian data in compact form
n = 7;
x =[llllllllll
% convert to full complex.
z = nag_herm2complex(x);
disp('Original sequence in full complex form:');
disp(transpose(z));
% transform back to real data
[xt, ifail] = c06eb(x);
disp('Discrete Fourier Transform of x:');
disp(transpose(xt));
% restore by backtransforming to Hermitian data and conjugating
[xr, ifail] = c06ea(xt);
xr(floor(n/2)+2:n) = -xr(floor(n/2)+2:n);
fprintf('Original sequence as restored by inverse transform\n\n');
fprintf(' Original Restored\n');
for j = 1:n
    fprintf('%3d %7.4f %7.4f\n',j, x(j),xr(j));
end
function [z] = nag_herm2complex(x);
    n = size(x,2);
    z(1) = complex(x(1));
    for j = 2:floor((n-1)/2) + 1
            z(j) = x(j) + i*x(n-j+2);
            z(n-j+2) = x(j) - i*x(n-j+2);
    end
    if (mod}(n,2)==0
        z(n/2+1) = complex(x(n/2+1));
    end
```


9.2 Program Results

```
    c06eb example results
Original sequence in full complex form:
    0.3491 + 0.0000i
    0.5489 + 1.5137i
    0.7478 + 1.3285i
    0.9446 + 1.1385i
    0.9446 - 1.1385i
    0.7478 - 1.3285i
    0.5489 - 1.5137i
Discrete Fourier Transform of x:
        1.8262
        1.8686
    -0.0175
        0.5020
    -0.5987
    -0.0314
    -2.6256
Original sequence as restored by inverse transform
\begin{tabular}{ll} 
Original & Restored \\
0.3491 & 0.3491 \\
0.5489 & 0.5489 \\
0.7478 & 0.7478 \\
0.9446 & 0.9446 \\
1.1385 & 1.1385 \\
1.3285 & 1.3285 \\
1.5137 & 1.5137
\end{tabular}
```

