NAG Toolbox

nag sum fft real 1d nowork (c06ea)

1 Purpose

 $nag_sum_fft_real_1d_nowork$ (c06ea) calculates the discrete Fourier transform of a sequence of n real data values. (No extra workspace required.)

Note: This function is scheduled to be withdrawn, please see c06ea in Advice on Replacement Calls for Withdrawn/Superseded Routines..

2 Syntax

```
[x, ifail] = nag_sum_fft_real_1d_nowork(x, 'n', n)
[x, ifail] = c06ea(x, 'n', n)
```

3 Description

Given a sequence of n real data values x_j , for j = 0, 1, ..., n - 1, nag_sum_fft_real_1d_nowork (c06ea) calculates their discrete Fourier transform defined by

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e., \hat{z}_{n-k} is the complex conjugate of \hat{z}_k), so they are completely determined by n real numbers (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be followed by a call of nag_sum_conjugate_hermitian_rfmt (c06gb) to form the complex conjugates of the \hat{z}_k .

nag_sum_fft_real_1d_nowork (c06ea) uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1:
$$\mathbf{x}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$$
 array $\mathbf{x}(j+1)$ must contain x_j , for $j=0,1,\ldots,n-1$.

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the dimension of the array \mathbf{x} .

Mark 25 c06ea.1

n, the number of data values. The largest prime factor of **n** must not exceed 19, and the total number of prime factors of **n**, counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

5.3 Output Parameters

1: $\mathbf{x}(\mathbf{n}) - \text{REAL}$ (KIND=nag wp) array

The discrete Fourier transform stored in Hermitian form. If the components of the transform \hat{z}_k are written as $a_k + ib_k$, and if \mathbf{x} is declared with bounds $(0 : \mathbf{n} - 1)$ in the function from which nag_sum_fft_real_1d_nowork (c06ea) is called, then for $0 \le k \le n/2$, a_k is contained in $\mathbf{x}(k)$, and for $1 \le k \le (n-1)/2$, b_k is contained in $\mathbf{x}(n-k)$. (See also Section 2.1.2 in the C06 Chapter Introduction and Section 10.)

2: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

At least one of the prime factors of **n** is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} < 1$.

ifail = 4

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log(n)$, but also depends on the factorization of n. nag_sum_fft_real_1d_nowork (c06ea) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

c06ea.2 Mark 25

On the other hand, nag_sum_fft_real_1d_nowork (c06ea) is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, nag sum fft real 1d rfmt (c06fa) (which requires additional double workspace) is considerably faster.

9 Example

This example reads in a sequence of real data values and prints their discrete Fourier transform (as computed by nag_sum_fft_real_1d_nowork (c06ea)), after expanding it from Hermitian form into a full complex sequence. It then performs an inverse transform using nag_sum_conjugate_hermitian_rfmt (c06gb) followed by nag_sum_fft_hermitian_1d_nowork (c06eb), and prints the sequence so obtained alongside the original data values.

9.1 Program Text

```
function c06ea_example
fprintf('c06ea example results\n\n');
% real data
n = 7;
x = [0.34907 \quad 0.54890 \quad 0.74776 \quad 0.94459 \quad 1.13850 \quad 1.32850 \quad 1.51370];
% transform
[xt, ifail] = c06ea(x);
% get result in form useful for printing.
zt = nag_herm2complex(xt);
disp('Discrete Fourier Transform of x:');
disp(transpose(zt));
% restore by conjugating and backtransforming
xt(floor(n/2)+2:n) = -xt(floor(n/2)+2:n);
[xr, ifail] = c06eb(xt);
fprintf('Original sequence as restored by inverse transform\n'n');
fprintf('
                Original
                           Restored\n');
for j = 1:n
 fprintf('%3d
                 %7.4f
                           7.4f\n',j, x(j),xr(j);
function [z] = nag_herm2complex(x);
 n = size(x,2);
  z(1) = complex(x(1));
  for j = 2:floor((n-1)/2) + 1
    z(j) = x(j) + i*x(n-j+2);
    z(n-j+2) = x(j) - i*x(n-j+2);
  if (mod(n,2)==0)
    z(n/2+1) = complex(x(n/2+1));
  end
```

9.2 Program Results

```
c06ea example results

Discrete Fourier Transform of x:
    2.4836 + 0.0000i
    -0.2660 + 0.5309i
    -0.2577 + 0.2030i
    -0.2564 + 0.0581i
    -0.2564 - 0.0581i
    -0.2577 - 0.2030i
    -0.2660 - 0.5309i

Original sequence as restored by inverse transform

Original Restored
```

Mark 25 c06ea.3

	n	-		
C	u	h	e	Я

1	0.3491	0.3491
2	0.5489	0.5489
3	0.7478	0.7478
4	0.9446	0.9446
5	1.1385	1.1385
6	1.3285	1.3285
7	1.5137	1.5137

c06ea.4 (last) Mark 25