Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_specfun_opt_binary_aon_greeks (s30cd)

## Purpose

nag_specfun_opt_binary_aon_greeks (s30cd) computes the price of a binary or digital asset-or-nothing option together with its sensitivities (Greeks).

## Syntax

[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = s30cd(calput, x, s, t, sigma, r, q, 'm', m, 'n', n)
[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = nag_specfun_opt_binary_aon_greeks(calput, x, s, t, sigma, r, q, 'm', m, 'n', n)

## Description

nag_specfun_opt_binary_aon_greeks (s30cd) computes the price of a binary or digital asset-or-nothing option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. This option pays the underlying asset itself, $S$, at expiration if the option is in-the-money (see Option Pricing Routines in the S Chapter Introduction). For a strike price, $X$, underlying asset price, $S$, and time to expiry, $T$, the payoff is therefore $S$, if $S>X$ for a call or $S for a put. Nothing is paid out when this condition is not met.
The price of a call with volatility, $\sigma$, risk-free interest rate, $r$, and annualised dividend yield, $q$, is
 $Pcall = S e-qT Φd1$
and for a put,
 $Pput = S e-qT Φ-d1$
where $\Phi$ is the cumulative Normal distribution function,
 $Φx = 1 2π ∫ -∞ x exp -y2/2 dy ,$
and
 $d1 = ln S/X + r-q + σ2 / 2 T σ⁢T .$
The option price ${P}_{ij}=P\left(X={X}_{i},T={T}_{j}\right)$ is computed for each strike price in a set ${X}_{i}$, $i=1,2,\dots ,m$, and for each expiry time in a set ${T}_{j}$, $j=1,2,\dots ,n$.

## References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{calput}$ – string (length ≥ 1)
Determines whether the option is a call or a put.
${\mathbf{calput}}=\text{'C'}$
A call; the holder has a right to buy.
${\mathbf{calput}}=\text{'P'}$
A put; the holder has a right to sell.
Constraint: ${\mathbf{calput}}=\text{'C'}$ or $\text{'P'}$.
2:     $\mathrm{x}\left({\mathbf{m}}\right)$ – double array
${\mathbf{x}}\left(i\right)$ must contain ${X}_{\mathit{i}}$, the $\mathit{i}$th strike price, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
Constraint: ${\mathbf{x}}\left(\mathit{i}\right)\ge z\text{​ and ​}{\mathbf{x}}\left(\mathit{i}\right)\le 1/z$, where $z={\mathbf{x02am}}\left(\right)$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
3:     $\mathrm{s}$ – double scalar
$S$, the price of the underlying asset.
Constraint: ${\mathbf{s}}\ge z\text{​ and ​}{\mathbf{s}}\le 1.0/z$, where $z={\mathbf{x02am}}\left(\right)$, the safe range parameter.
4:     $\mathrm{t}\left({\mathbf{n}}\right)$ – double array
${\mathbf{t}}\left(i\right)$ must contain ${T}_{\mathit{i}}$, the $\mathit{i}$th time, in years, to expiry, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Constraint: ${\mathbf{t}}\left(\mathit{i}\right)\ge z$, where $z={\mathbf{x02am}}\left(\right)$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
5:     $\mathrm{sigma}$ – double scalar
$\sigma$, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: ${\mathbf{sigma}}>0.0$.
6:     $\mathrm{r}$ – double scalar
$r$, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: ${\mathbf{r}}\ge 0.0$.
7:     $\mathrm{q}$ – double scalar
$q$, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: ${\mathbf{q}}\ge 0.0$.

### Optional Input Parameters

1:     $\mathrm{m}$int64int32nag_int scalar
Default: the dimension of the array x.
The number of strike prices to be used.
Constraint: ${\mathbf{m}}\ge 1$.
2:     $\mathrm{n}$int64int32nag_int scalar
Default: the dimension of the array t.
The number of times to expiry to be used.
Constraint: ${\mathbf{n}}\ge 1$.

### Output Parameters

1:     $\mathrm{p}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{p}}\left(i,j\right)$ contains ${P}_{ij}$, the option price evaluated for the strike price ${{\mathbf{x}}}_{i}$ at expiry ${{\mathbf{t}}}_{j}$ for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
2:     $\mathrm{delta}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
The leading ${\mathbf{m}}×{\mathbf{n}}$ part of the array delta contains the sensitivity, $\frac{\partial P}{\partial S}$, of the option price to change in the price of the underlying asset.
3:     $\mathrm{gamma}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
The leading ${\mathbf{m}}×{\mathbf{n}}$ part of the array gamma contains the sensitivity, $\frac{{\partial }^{2}P}{\partial {S}^{2}}$, of delta to change in the price of the underlying asset.
4:     $\mathrm{vega}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{vega}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in the volatility of the underlying asset, i.e., $\frac{\partial {P}_{ij}}{\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
5:     $\mathrm{theta}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{theta}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in time, i.e., $-\frac{\partial {P}_{ij}}{\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$, where $b=r-q$.
6:     $\mathrm{rho}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{rho}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in the annual risk-free interest rate, i.e., $-\frac{\partial {P}_{ij}}{\partial r}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
7:     $\mathrm{crho}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{crho}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in the annual cost of carry rate, i.e., $-\frac{\partial {P}_{ij}}{\partial b}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$, where $b=r-q$.
8:     $\mathrm{vanna}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{vanna}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the volatility of the asset price, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial T}=-\frac{{\partial }^{2}{P}_{ij}}{\partial S\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
9:     $\mathrm{charm}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{charm}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the time, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial T}=-\frac{{\partial }^{2}{P}_{ij}}{\partial S\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
10:   $\mathrm{speed}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{speed}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the price of the underlying asset, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial S}=-\frac{{\partial }^{3}{P}_{ij}}{\partial {S}^{3}}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
11:   $\mathrm{colour}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{colour}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the time, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial T}=-\frac{{\partial }^{3}{P}_{ij}}{\partial S\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
12:   $\mathrm{zomma}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{zomma}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial \sigma }=-\frac{{\partial }^{3}{P}_{ij}}{\partial {S}^{2}\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
13:   $\mathrm{vomma}\left(\mathit{ldp},{\mathbf{n}}\right)$ – double array
$\mathit{ldp}={\mathbf{m}}$.
${\mathbf{vomma}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial \sigma }=-\frac{{\partial }^{2}{P}_{ij}}{\partial {\sigma }^{2}}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
14:   $\mathrm{ifail}$int64int32nag_int scalar
${\mathbf{ifail}}={\mathbf{0}}$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

Errors or warnings detected by the function:
${\mathbf{ifail}}=1$
On entry, ${\mathbf{calput}}=_$ was an illegal value.
${\mathbf{ifail}}=2$
Constraint: ${\mathbf{m}}\ge 1$.
${\mathbf{ifail}}=3$
Constraint: ${\mathbf{n}}\ge 1$.
${\mathbf{ifail}}=4$
Constraint: ${\mathbf{x}}\left(i\right)\ge _$ and ${\mathbf{x}}\left(i\right)\le _$.
${\mathbf{ifail}}=5$
Constraint: ${\mathbf{s}}\ge _$ and ${\mathbf{s}}\le _$.
${\mathbf{ifail}}=6$
Constraint: ${\mathbf{t}}\left(i\right)\ge _$.
${\mathbf{ifail}}=7$
Constraint: ${\mathbf{sigma}}>0.0$.
${\mathbf{ifail}}=8$
Constraint: ${\mathbf{r}}\ge 0.0$.
${\mathbf{ifail}}=9$
Constraint: ${\mathbf{q}}\ge 0.0$.
${\mathbf{ifail}}=11$
Constraint: $\mathit{ldp}\ge {\mathbf{m}}$.
${\mathbf{ifail}}=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
${\mathbf{ifail}}=-399$
Your licence key may have expired or may not have been installed correctly.
${\mathbf{ifail}}=-999$
Dynamic memory allocation failed.

## Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, $\Phi$. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_specfun_cdf_normal (s15ab) and nag_specfun_erfc_real (s15ad)). An accuracy close to machine precision can generally be expected.

None.

## Example

This example computes the price of an asset-or-nothing put with a time to expiry of $292$ days, a stock price of $70$ and a strike price of $65$. The risk-free interest rate is $5%$ per year, there is an annual dividend return of $3%$ and the volatility is $15%$ per year.
```function s30cd_example

fprintf('s30cd example results\n\n');

put   = 'P';
s     = 70;
sigma = 0.15;
r     = 0.05;
q     = 0.03;
x     = [65.0];
t     = [0.8];

[p, delta, gamma,  vega,  theta,   rho,  crho, ...
vanna, charm, speed, colour, zomma, vomma, ifail] = ...
s30cd(...
put, x, s, t, sigma, r, q);

fprintf('\nBinary (Digital): Asset-or-Nothing\n European Put :\n');
fprintf('  Spot       =   %9.4f\n', s);
fprintf('  Volatility =   %9.4f\n', sigma);
fprintf('  Rate       =   %9.4f\n', r);
fprintf('  Dividend   =   %9.4f\n\n', q);

fprintf(' Time to Expiry : %8.4f\n', t(1));
fprintf('%8s%9s%9s%9s%9s%9s%11s%11s\n','Strike','Price','Delta','Gamma',...
'Vega','Theta','Rho','CRho');
fprintf('%8.4f%9.4f%9.4f%9.4f%9.4f%9.4f%11.4f%11.4f\n\n', x(1), p(1,1), ...
delta(1,1), gamma(1,1), vega(1,1), theta(1,1), rho(1,1), crho(1,1));

fprintf('%26s%9s%9s%9s%11s%11s\n','Vanna','Charm','Speed','Colour',...
'Zomma','Vomma');
fprintf('%17s%9.4f%9.4f%9.4f%9.4f%11.4f%11.4f\n\n', ' ', vanna(1,1), ...
charm(1,1), speed(1,1), colour(1,1), zomma(1,1), vomma(1,1));

```
```s30cd example results

Binary (Digital): Asset-or-Nothing
European Put :
Spot       =     70.0000
Volatility =      0.1500
Rate       =      0.0500
Dividend   =      0.0300

Time to Expiry :   0.8000
Strike    Price    Delta    Gamma     Vega    Theta        Rho       CRho
65.0000  15.7211  -1.9852   0.1422  83.6424  -4.2761  -123.7497  -111.1728

Vanna    Charm    Speed   Colour      Zomma      Vomma
9.3479  -1.1351   0.0118   0.2316    -2.6319  -989.9610

```

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015