hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_linsys_real_toeplitz_yule_update (f04me)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_linsys_real_toeplitz_yule_update (f04me) updates the solution to the Yule–Walker equations for a real symmetric positive definite Toeplitz system.

Syntax

[x, v, ifail] = f04me(t, x, v, 'n', n)
[x, v, ifail] = nag_linsys_real_toeplitz_yule_update(t, x, v, 'n', n)

Description

nag_linsys_real_toeplitz_yule_update (f04me) solves the equations
Tnxn=-tn,  
where Tn is the n by n symmetric positive definite Toeplitz matrix
Tn= τ0 τ1 τ2 τn-1 τ1 τ0 τ1 τn-2 τ2 τ1 τ0 τn-3 . . . . τn-1 τn-2 τn-3 τ0  
and tn is the vector
tnT =τ1τ2τn,  
given the solution of the equations
Tn- 1xn- 1=-tn- 1.  
The function will normally be used to successively solve the equations
Tkxk=-tk,  k=1,2,,n.  
If it is desired to solve the equations for a single value of n, then function nag_linsys_real_toeplitz_yule (f04fe) may be called. This function uses the method of Durbin (see Durbin (1960) and Golub and Van Loan (1996)).

References

Bunch J R (1985) Stability of methods for solving Toeplitz systems of equations SIAM J. Sci. Statist. Comput. 6 349–364
Bunch J R (1987) The weak and strong stability of algorithms in numerical linear algebra Linear Algebra Appl. 88/89 49–66
Cybenko G (1980) The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems of equations SIAM J. Sci. Statist. Comput. 1 303–319
Durbin J (1960) The fitting of time series models Rev. Inst. Internat. Stat. 28 233
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     t0:n – double array
t0 must contain the value τ0 of the diagonal elements of T, and the remaining n elements of t must contain the elements of the vector tn.
Constraint: t0>0.0. Note that if this is not true, then the Toeplitz matrix cannot be positive definite.
2:     x: – double array
The dimension of the array x must be at least max1,n
With n>1 the (n-1) elements of the solution vector xn-1 as returned by a previous call to nag_linsys_real_toeplitz_yule_update (f04me). The element xn need not be specified.
Constraint: xn-1<1.0. Note that this is the partial (auto)correlation coefficient, or reflection coefficient, for the n-1th step. If the constraint does not hold, then Tn cannot be positive definite.
3:     v – double scalar
With n>1 the mean square prediction error for the (n-1)th step, as returned by a previous call to nag_linsys_real_toeplitz_yule_update (f04me).

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array x.
The order of the Toeplitz matrix T.
Constraint: n0. When n=0, then an immediate return is effected.

Output Parameters

1:     x: – double array
The dimension of the array x will be max1,n
The solution vector xn. The element xn returns the partial (auto)correlation coefficient, or reflection coefficient, for the nth step. If xn1.0, then the matrix Tn+1 will not be positive definite to working accuracy.
2:     v – double scalar
The mean square prediction error, or predictor error variance ratio, νn, for the nth step. (See Further Comments and the Introduction to Chapter G13.)
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   ifail=-1
On entry,n<0,
ort00.0,
orn>1 and xn-11.0.
W  ifail=1
The Toeplitz matrix Tn+1 is not positive definite to working accuracy. If, on exit, xn is close to unity, then the principal minor was probably close to being singular, and the sequence τ0,τ1,,τn may be a valid sequence nevertheless. x returns the solution of the equations
Tnxn=-tn,  
and v returns vn, but it may not be positive.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The computed solution of the equations certainly satisfies
r=Tnxn+tn,  
where r1 is approximately bounded by
r1cε i=1n1+pi-1 ,  
c being a modest function of n, ε being the machine precision and pk being the kth element of xk. This bound is almost certainly pessimistic, but it has not yet been established whether or not the method of Durbin is backward stable. For further information on stability issues see Bunch (1985), Bunch (1987), Cybenko (1980) and Golub and Van Loan (1996). The following bounds on Tn-11 hold:
max1vn-1,1i=1 n-11-pi Tn-11i=1 n-1 1+pi 1-pi ,  
where vn is the mean square prediction error for the nth step. (See Cybenko (1980).) Note that vn<vn-1. The norm of Tn-1 may also be estimated using function nag_linsys_real_gen_norm_rcomm (f04yd).

Further Comments

The number of floating-point operations used by this function is approximately 4n.
The mean square prediction errors, vi, is defined as
vi=τ0+ ti-1T xi-1/τ0.  
Note that vi=1-pi2vi-1.

Example

This example finds the solution of the Yule–Walker equations Tkxk=-tk, k=1,2,3,4 where
T4= 4 3 2 1 3 4 3 2 2 3 4 3 1 2 3 4   and  t4= 3 2 1 0 .  
function f04me_example


fprintf('f04me example results\n\n');

t = [4; 3; 2; 1; 0];
v = 0;
x=[0];
fprintf('  order   MSP error   solution\n');
for k=1:4
  [x, v, ifail] = f04me(t(1:k+1), x, v);
fprintf('%6d%11.4f    ', k, v);
  fprintf('%8.4f',transpose(x));
  fprintf('\n');
  if k < 4
    x = [x; 0]; % Extend x by one element
  end
end


f04me example results

  order   MSP error   solution
     1     0.4375     -0.7500
     2     0.4286     -0.8571  0.1429
     3     0.4167     -0.8333  0.0000  0.1667
     4     0.4000     -0.8000  0.0000 -0.0000  0.2000

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015