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Abstract. Rejection sampling is a powerful method for sampling from many distribu-
tions. Unfortunately the method is very sensitive to the parameters of the distribution:
changing them even slightly can lead to an entirely different sequence of random num-
bers being produced. This is especially problematic when computing model sensitivities
using Monte Carlo integration. We briefly illustrate how recent research into quantiles
of distributions can be adapted to deal with this problem.

1. Introduction

The rejection method is a well known and very powerful tool for drawing random
numbers from various distributions. Its great strength is that it allows us to sample from
virtually any distribution for which we have a density function. For many complicated
distributions it is the only method we have of generating random numbers.

The downside of the rejection method is traditionally seen as being its speed: it is often
not very efficient. The method requires one to throw away (or reject) some of the samples
that have been generated, and so some of the computing effort is inevitably wasted. Much
research has been devoted to reducing the proportion of samples that are rejected when
sampling from various distributions.

However another problem is that rejection methods are very sensitive to the parameters
of the distribution being sampled from. To illustrate, consider sampling from a Normal
distribution with mean 0 and variance 1 via the inverse cumulative distribution function
(CDF) method. We might obtain the following sequence of random numbers:

−1.2051 1.0102 0.05104 − 3.5096 1.7015 0.5065 − 0.4571 . . .

Re-initializing the generator to the same seed and sampling from a Normal distribution
with mean 0.01 and variance 1 would then give

−1.1951 1.0202 0.06104 − 3.4996 1.7115 0.5165 − 0.4471 . . . ,

in other words, a small perturbation in the distribution parameters results in a small
perturbation in each random number. Now consider sampling from a gamma distribution
with parameters α = 1 and β = 1 by rejection. We might obtain the following sequence
of random numbers:

2.2150 1.1105 2.0571 0.0052 0.9841 1.9015 1.4002 . . .

If we now re-initialize the generator to the same seed and sample from a gamma distribu-
tion with parameters α = 1.01 and β = 1 , we might obtain

2.2234 1.1211 2.0631 1.0549 2.9102 1.0014 0.0517 . . . .

Some time after the third gamma random number is generated, a sample which was
previously below the rejection envelope is pushed above it and is rejected, and from that
point on the two sequences will be completely different.

This becomes a problem when computing the sensitivity of a model to the parameters of
the distribution. Suppose that Xη,n =

(
x1(η), x2(η), . . . , xn(η)

)
is a sample of n random
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numbers from some distribution with parameter η and let Hη,n ≡ H(Xη,n) denote a
Monte Carlo estimator based on the sample Xη,n . One way of approximating ∂Hη,n/∂η
is to compute

(1)
∂Hη,n

∂η
≈ Hη+ε,n −Hη,n

ε
=
H(Xη+ε,n) −H(Xη,n)

ε
.

for some small ε > 0 . If xi(η) ≈ xi(η + ε) for each i = 1, 2, . . . , n , then the approx-
imation (1) would be reasonably accurate, and averaging a few of these estimates could
produce an overall estimate which is reasonably stable. However if xi(η) is completely
different from xi(η+ ε) , then noise from the Monte Carlo estimation itself enters (1) and
may completely drown the perturbations in the model that we wish to observe. Typically
the only way to get around this is to increase n significantly so that the Monte Carlo
noise is small in comparison to the model perturbations.

When the underlying random numbers are generated by rejection, computing model
sensitivities to the distribution parameters can be problematic.

2. Quantile Mechanics and Recycling

Recent research (see [1]) into computing quantiles of various distributions may prove
useful in tackling this problem. The idea is very simple. Suppose we have a distribution
with cumulative distribution function (CDF) F that we wish to sample from. The so-
called inverse-CDF method would set

(2) X = F−1(U)

where U is a random variable with a U(0, 1) distribution, so that the random variable
X now has CDF given by F . However we can also set

(3) X = F−1
(
G(G−1(U))

)
for any smooth monotonic function G . If we set J = F−1 ◦G , then (2) becomes

(4) X = J
(
G−1(U)

)
.

This procedure is termed quantile mechanics in [1], and the random variable G−1(U) is
said to be recycled into the target distribution F .

If G is chosen judiciously, then G−1(U) is cheap to compute and J is well approx-
imated by rational functions over almost all of its domain. As an example, consider the
inverse error function erfinv. Typically erfinv is approximated by splitting the do-
main into three different sub-domains, with a different rational approximation in each
sub-domain. On any SIMD-based (single instruction multiple data) architecture such as
GPUs or SSE/AVX units on modern CPUs, this will lead to problems when erfinv is
used to transform a sample of U(0, 1) random numbers into a sample of Normal random
numbers. On NVIDIA GPUs, for example, it will lead to warp divergence and it was this
divergence which led the authors of [1] to re-examine the approximation of erfinv. They
show that by choosing G so that J is approximated well by a single rational function
over virtually all of its domain, the proportion of divergent warps can be reduced.

It is possible to adapt the ideas in [1] to the present problem of computing sen-
sitivities to distributions sampled via rejection. Suppose we have a sample Xη,n =(
x1(η), x2(η), . . . , xn(η)

)
of random numbers from a distribution with parameter η > 0

that are sampled by rejection (or indeed by any sampling method). Let Fη denote the
CDF of the distribution and define Uη,n =

(
u1(η), u2(η), . . . , un(η)

)
by setting

(5) ui(η) := Fη
(
xi(η)

)
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for each i = 1, . . . , n so that Uη,n is an independent and identically distributed sequence
of U(0, 1) random numbers.

Suppose that we now wish to perturb η to η + ε for some small ε > 0 in order
to compute sensitivities. Ideally then we would want to generate a dependent sample
Xη+ε,n =

(
x1(η + ε), x2(η + ε), . . . , xn(η + ε)

)
from our current sample Xη,n by setting

(6) xi(η + ε) = F−1
η+ε

(
ui(η)

)
= F−1

η+ε

(
Fη

(
xi(η)

))
:= J

(
xi(η)

)
for all i = 1, . . . , n where

(7) J(x) := F−1
η+ε ◦ Fη(x).

In other words, we are recycling Xη,n into Xη+ε,n . If ε is small, then Fη and Fη+ε
should be close together so that the function J should be well approximated by a single
rational function. This should allow an efficient method for transforming one sample of
random numbers into a dependent sample from a slightly perturbed distribution.

3. Closing Remarks

NAG is interested to hear from individuals, academics and practitioners about whether
or not this approach is one that could be used in practice for commercial or research work.
This methodology is one we are interested in exploring. In particular, we are interested
in collaborating with anyone who has a use case for this approach, so that we can better
evaluate client needs and ensure the resulting routines are fit for purpose.
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