NAG Library Routine Document

F08SNF (ZHEGV)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08SNF (ZHEGV) computes all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

\[Az = \lambda Bz, \quad ABz = \lambda z \quad \text{or} \quad BAz = \lambda z, \]

where \(A \) and \(B \) are Hermitian and \(B \) is also positive definite.

2 Specification

SUBROUTINE F08SNF (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, & RWORK, INFO)

INTEGER ITYPE, N, LDA, LDB, LWORK, INFO
REAL (KIND=nag_wp) W(N), RWORK(3*N-2)
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*), WORK(max(1,LWORK))
CHARACTER(1) JOBZ, UPLO

The routine may be called by its LAPACK name zhegv.

3 Description

F08SNF (ZHEGV) first performs a Cholesky factorization of the matrix \(B \) as \(B = U^H U \), when \(\text{UPLO} = \text{'U'} \) or \(B = LL^H \), when \(\text{UPLO} = \text{'L'} \). The generalized problem is then reduced to a standard symmetric eigenvalue problem

\[Cx = \lambda x, \]

which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then backtransformed to give the eigenvectors of the original problem.

For the problem \(Az = \lambda Bz \), the eigenvectors are normalized so that the matrix of eigenvectors, \(z \), satisfies

\[Z^H AZ = A \quad \text{and} \quad Z^H BZ = I, \]

where \(A \) is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem \(ABz = \lambda z \) we correspondingly have

\[Z^{-1} A Z^{-H} = A \quad \text{and} \quad Z^H BZ = I, \]

and for \(BAz = \lambda z \) we have

\[Z^H AZ = A \quad \text{and} \quad Z^H B^{-1} Z = I. \]

4 References

5 Arguments

1: ITYPE – INTEGER
 \textit{Input}
 \textit{On entry:} specifies the problem type to be solved.

 ITYPE = 1
 \[A z = \lambda B z. \]

 ITYPE = 2
 \[A B z = \lambda z. \]

 ITYPE = 3
 \[B A z = \lambda z. \]

 \textit{Constraint:} ITYPE = 1, 2 or 3.

2: JOBZ – CHARACTER(1)
 \textit{Input}
 \textit{On entry:} indicates whether eigenvectors are computed.

 JOBZ = 'N'
 Only eigenvalues are computed.

 JOBZ = 'V'
 Eigenvalues and eigenvectors are computed.

 \textit{Constraint:} JOBZ = 'N' or 'V'.

3: UPLO – CHARACTER(1)
 \textit{Input}
 \textit{On entry:} if UPLO = 'U', the upper triangles of \(A \) and \(B \) are stored.

 If UPLO = 'L', the lower triangles of \(A \) and \(B \) are stored.

 \textit{Constraint:} UPLO = 'U' or 'L'.

4: N – INTEGER
 \textit{Input}
 \textit{On entry:} \(n \), the order of the matrices \(A \) and \(B \).

 \textit{Constraint:} \(N \geq 0 \).

5: A(LDA, :) – COMPLEX (KIND=nag_wp) array
 \textit{Input/Output}
 \textit{Note:} the second dimension of the array A must be at least max(1, N).

 \textit{On entry:} the \(n \) by \(n \) Hermitian matrix \(A \).

 If UPLO = 'U', the upper triangular part of \(A \) must be stored and the elements of the array below the diagonal are not referenced.

 If UPLO = 'L', the lower triangular part of \(A \) must be stored and the elements of the array above the diagonal are not referenced.

 \textit{On exit:} if JOBZ = 'V', \(A \) contains the matrix \(Z \) of eigenvectors. The eigenvectors are normalized as follows:

 if ITYPE = 1 or 2, \(Z^H B Z = I \);

 if ITYPE = 3, \(Z^H B^{-1} Z = I \).

 If JOBZ = 'N', the upper triangle (if UPLO = 'U') or the lower triangle (if UPLO = 'L') of \(A \), including the diagonal, is overwritten.
6: LDA – INTEGER

Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SNF (ZHEGV) is called.

Constraint: LDA ≥ max(1,N).

7: B(LDB,*) – COMPLEX (KIND=nag_wp) array

Input/Output

Note: the second dimension of the array B must be at least max(1,N).

On entry: the n by n Hermitian positive definite matrix B.

 If UPLO = 'U', the upper triangular part of B must be stored and the elements of the array below the diagonal are not referenced.

 If UPLO = 'L', the lower triangular part of B must be stored and the elements of the array above the diagonal are not referenced.

On exit: if 0 ≤ INFO ≤ N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U^H U or B = L L^H.

8: LDB – INTEGER

Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SNF (ZHEGV) is called.

Constraint: LDB ≥ max(1,N).

9: W(N) – REAL (KIND=nag_wp) array

Output

On exit: the eigenvalues in ascending order.

10: WORK(max(1,LWORK)) – COMPLEX (KIND=nag_wp) array

Workspace

On exit: if INFO = 0, the real part of WORK(1) contains the minimum value of LWORK required for optimal performance.

11: LWORK – INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08SNF (ZHEGV) is called.

If LWORK = -1, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK ≥ (nb + 1) × N, where nb is the optimal *block size* for F08FSF (ZHETRD).

Constraint: LWORK ≥ max(1,2 × N).

12: RWORK(3 × N – 2) – REAL (KIND=nag_wp) array

Workspace

13: INFO – INTEGER

Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO = −i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
INFO = 1 to N
If INFO = i, F08FNF (ZHEEV) failed to converge; i i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

INFO > N
F07FRF (ZPOTRF) returned an error code; i.e., if INFO = N + i, for 1 ≤ i ≤ N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

7 Accuracy
If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of B differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section 4.10 of Anderson et al. (1999) for details of the error bounds.

The example program below illustrates the computation of approximate error bounds.

8 Parallelism and Performance
F08SNF (ZHEGV) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08SNF (ZHEGV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments
The total number of floating-point operations is proportional to n³.
The real analogue of this routine is F08SAF (DSYGV).

10 Example
This example finds all the eigenvalues and eigenvectors of the generalized Hermitian eigenproblem \(Az = \lambda Bz \), where

\[
A = \begin{pmatrix}
-7.36 & 0.77 - 0.43i & -0.64 - 0.92i & 3.01 - 6.97i \\
0.77 + 0.43i & 3.49 & 2.19 + 4.45i & 1.90 + 3.73i \\
-0.64 + 0.92i & 2.19 - 4.45i & 0.12 & 2.88 - 3.17i \\
3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix}
3.23 & 1.51 - 1.92i & 1.90 + 0.84i & 0.42 + 2.50i \\
1.51 + 1.92i & 3.58 & -0.23 + 1.11i & -1.18 + 1.37i \\
1.90 - 0.84i & -0.23 - 1.11i & 4.09 & 2.33 - 0.14i \\
0.42 - 2.50i & -1.18 - 1.37i & 2.33 + 0.14i & 4.29
\end{pmatrix},
\]

together with and estimate of the condition number of B, and approximate error bounds for the computed eigenvalues and eigenvectors.
The example program for F08SQF (ZHEGVD) illustrates solving a generalized Hermitian eigenproblem of the form \(ABz = \lambda z \).
10.1 Program Text

Program f08snfe

! F08SNF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: ddisna, f06ucf, nag_wp, x02ajf, x04daf, zhegv, &
ztrcon
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Complex (Kind=nag_wp) :: scal
Real (Kind=nag_wp) :: anorm, bnorm, eps, rcond, rcondb, &
t1, t2, t3
Integer :: i, ifail, info, k, lda, ldb, lwork, &
n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), eerbnd(:), rcondz(:), rwork(:), &
zerbnd(:)
Real (Kind=nag_wp), Allocatable :: eerbnd(:), rcondz(:), rwork(:), &
w(:), zerbnd(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, conjg, max, maxloc, nint, real
! .. Executable Statements ..
Write (nout,*) 'F08SNF Example Program Results'
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldb = n
Allocate (a(lda,n),b(ldb,n),eerbnd(n),rcondz(n),rwork(3*n-2),w(n), &
zeerbnd(n))

! Use routine workspace query to get optimal workspace.
lwork = -1
! The NAG name equivalent of zhegv is f08snf
Call zhegv(1,'Vectors','Upper',n,a,lda,b,ldb,w,dummy,lwork,rwork,info)
! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))

! Read the upper triangular parts of the matrices A and B
Read (nin,*)(a(i,i:n),i=1,n)
Read (nin,*)(b(i,i:n),i=1,n)

! Compute the one-norms of the symmetric matrices A and B
anorm = f06ucf('One norm','Upper',n,lda,a,rwork)
bnorm = f06ucf('One norm','Upper',n,ldb,b,rwork)

! Solve the generalized Hermitian eigenvalue problem
A*x = lambda*B*x (itype = 1)
! The NAG name equivalent of zhegv is f08snf
Call zhegv(1,'Vectors','Upper',n,lda,b,ldb,w,work,lwork,rwork,info)
If (info==0) Then
 ! Print solution
 Write (nout,*) 'Eigenvalues'
 Write (nout,99999) w(1:n)
 Flush (nout)
Normalize the eigenvectors, largest element real
(normalization w.r.t B unaffected: $Z^HBZ = I$).
Do i = 1, n
 rwork(1:n) = abs(a(1:n,i))
 k = maxloc(rwork(1:n),1)
 scal = conjg(a(k,i))/abs(a(k,i))
 a(1:n,i) = a(1:n,i)*scal
End Do

ifail: behaviour on error exit
ifail = 0
Call x04daf('General',"",n,n,a,lda,'Eigenvectors',ifail)
Call ZTRCON (F07TUF) to estimate the reciprocal condition
number of the Cholesky factor of B. Note that:
cond(B) = 1/rcond**2
Call ztrcon('One norm','Upper','Non-unit',n,b,ldb,rcond,work,rwork, & info)
Print the reciprocal condition number of B
rcondb = rcond**2
Write (nout,*) 'Estimate of reciprocal condition number for B'
Write (nout,99998) rcondb
Flush (nout)
Get the machine precision, eps, and if rcondb is not less
than eps**2, compute error estimates for the eigenvalues and
eigenvectors
eps = x02ajf()
If (rcond>=eps) Then
 Call DDISNA (F08FLF) to estimate reciprocal condition
 numbers for the eigenvectors of ($A - \lambda*B$)
 Call ddisna('Eigenvectors',n,n,w,rcondz,info)
 Compute the error estimates for the eigenvalues and
eigenvectors
t1 = eps/rcondb
t2 = anorm/bnorm
rcondb(t3 = t2/rcond
Do i = 1, n
 eerbnd(i) = t1*(t2+abs(w(i)))
 zerbnd(i) = t1*(t3+abs(w(i)))/rcondz(i)
End Do
Print the approximate error bounds for the eigenvalues
and vectors
Write (nout,*)
Write (nout,*) 'Error estimates for the eigenvalues'
Write (nout,99998) eerbnd(1:n)
Write (nout,*) 'Error estimates for the eigenvectors'
Write (nout,99998) zerbnd(1:n)
Else
 Write (nout,*)
 Write (nout,*) 'B is very ill-conditioned, error ', &
 'estimates have not been computed'
End If
Else If (info>n) Then
 i = info - n
 Write (nout,99997) 'The leading minor of order ', i, &
 ' of B is not positive definite'
Else
Write (nout,99996) ’Failure in ZHEGV. INFO =’, info
End If

99999 Format (3X,(6F11.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4,A)
99996 Format (1X,A,I4)
End Program f08snfe

10.2 Program Data

F08SNF Example Program Data

:Value of N

(-7.36, 0.00) (0.77, -0.43) (-0.64, -0.92) (3.01, -6.97)
(3.49, 0.00) (2.19, 4.45) (1.90, 3.73)
(0.12, 0.00) (2.88, -3.17)
(-2.54, 0.00) :End of matrix A

(3.23, 0.00) (1.51, -1.92) (1.90, 0.84) (0.42, 2.50)
(3.58, 0.00) (-0.23, 1.11) (-1.18, 1.37)
(4.09, 0.00) (2.33, -0.14)
(4.29, 0.00) :End of matrix B

10.3 Program Results

F08SNF Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

Eigenvectors
1 1.7405 -0.6626 0.2835 1.2378
0.0000 0.2258 -0.5806 0.0000
2 -0.4136 -0.1164 -0.3769 -0.5608
-0.4689 -0.0178 -0.3194 -0.3729
3 -0.8404 0.9098 -0.3338 -0.6643
-0.2483 -0.0000 -0.0134 -0.1021
4 0.3021 -0.6120 0.6663 0.1589
0.6103 -0.5348 0.0000 0.8366

Estimate of reciprocal condition number for B
2.5E-03

Error estimates for the eigenvalues
3.4E-13 2.0E-13 9.6E-14 2.5E-13

Error estimates for the eigenvectors
5.8E-13 5.3E-13 4.3E-13 4.7E-13