NAG Library Routine Document

F04MCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F04MCF computes the approximate solution of a system of real linear equations with multiple right-hand sides, AX = B, where A is a symmetric positive definite variable-bandwidth matrix, which has previously been factorized by F01MCF. Related systems may also be solved.

2 Specification

SUBROUTINE F04MCF (N, AL, LAL, D, NROW, IR, B, LDB, ISELCT, X, LDX, IFAIL)

INTEGER N, LAL, NROW(N), IR, LDB, ISELCT, LDX, IFAIL REAL (KIND=nag_wp) AL(LAL), D(*), B(LDB,IR), X(LDX,IR)

3 Description

The normal use of this routine is the solution of the systems AX = B, following a call of F01MCF to determine the Cholesky factorization $A = LDL^{T}$ of the symmetric positive definite variable-bandwidth matrix A.

However, the routine may be used to solve any one of the following systems of linear algebraic equations:

- 1. $LDL^{T}X = B$ (usual system),
- 2. LDX = B (lower triangular system),
- 3. $DL^{T}X = B$ (upper triangular system),
- 4. $LL^{\mathrm{T}}X = B$
- 5. LX = B (unit lower triangular system),
- 6. $L^{T}X = B$ (unit upper triangular system).

L denotes a unit lower triangular variable-bandwidth matrix of order n, D a diagonal matrix of order n, and B a set of right-hand sides.

The matrix L is represented by the elements lying within its **envelope**, i.e., between the first nonzero of each row and the diagonal (see Section 9 for an example). The width NROW(*i*) of the *i*th row is the number of elements between the first nonzero element and the element on the diagonal inclusive.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

1: N - INTEGER

On entry: n, the order of the matrix L.

Constraint: $N \ge 1$.

Input

2:	AL(LAL) – REAL (KIND=nag_wp) array	Input
	On entry: the elements within the envelope of the lower triangular matrix L , taken in row order, as returned by F01MCF. The unit diagonal elements of L must be stored explicitly.	
3:	LAL – INTEGER	Input
	On entry: the dimension of the array AL as declared in the (sub)program from which F04 called.	MCF is
	Constraint: $LAL \ge NROW(1) + NROW(2) + \ldots + NROW(n)$.	
4:	D(*) – REAL (KIND=nag_wp) array	Input
	Note: the dimension of the array D must be at least 1 if ISELCT \geq 4, and at least N oth	erwise.
	On entry: the diagonal elements of the diagonal matrix D. D is not referenced if ISELC	$T \ge 4.$
5:	NROW(N) - INTEGER array	Input
	On entry: NROW(i) must contain the width of row i of L , i.e., the number of elements between first (leftmost) nonzero element and the element on the diagonal, inclusive.	-
	Constraint: $1 \leq \text{NROW}(i) \leq i$.	
6:	IR – INTEGER	Input
	On entry: r, the number of right-hand sides.	1
	Constraint: $IR \ge 1$.	
7:	B(LDB,IR) – REAL (KIND=nag_wp) array	Input
	On entry: the n by r right-hand side matrix B. See also Section 8.	1
8:	LDB – INTEGER	Input
0.	<i>On entry</i> : the first dimension of the array B as declared in the (sub)program from which F04 called.	-
	Constraint: $LDB \ge N$.	
9:	ISELCT – INTEGER	Input
	On entry: must specify the type of system to be solved, as follows:	1
	ISELCT = 1 Solve $LDL^{T}X = B$.	
	ISELCT = 2 Solve $LDX = B$.	
	ISELCT = 3 Solve $DL^{T}X = B.$	
	ISELCT = 4 Solve $LL^{T}X = B$.	
	$\begin{array}{l} \text{ISELCT} = 5\\ \text{Solve } LX = B. \end{array}$	
	ISELCT = 6 Solve $L^{T}X = B$.	
	Constraint: $ISELCT = 1, 2, 3, 4, 5 \text{ or } 6.$	
10:	X(LDX,IR) – REAL (KIND=nag_wp) array	Output
	On exit: the n by r solution matrix X . See also Section 8.	

LDX - INTEGER

Constraint: $LDX \ge N$.

IFAIL - INTEGER

IFAIL on exit.

Section 6).

defined by X04AAF).

called.

11:

12:

6

IFAIL = 1

IFAIL = 2

or

or

or

LDX < N.or IFAIL = 3

LDB < N.

On entry, N < 1,

On entry, IR < 1,

On entry, ISELCT < 1, ISELCT > 6. or

IFAIL = 4

The diagonal matrix D is singular, i.e., at least one of the elements of D is zero. This can only occur if ISELCT ≤ 3 .

On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as

refer to Section 3.3 in the Essential Introduction for details.

Error Indicators and Warnings

Errors or warnings detected by the routine:

IFAIL = 5

At least one of the diagonal elements of L is not equal to unity.

for some i, NROW(i) < 1 or NROW(i) > i,

 $LAL < NROW(1) + NROW(2) + \cdots + NROW(N).$

7 Accuracy

The usual backward error analysis of the solution of triangular system applies: each computed solution vector is exact for slightly perturbed matrices L and D, as appropriate (see pages 25-27 and 54-55 of Wilkinson and Reinsch (1971)).

F04MCF

Input/Output

8 Further Comments

The time taken by F04MCF is approximately proportional to pr, where $p = \text{NROW}(1) + \text{NROW}(2) + \cdots + \text{NROW}(n)$.

Unless otherwise stated in the Users' Note for your implementation, the routine may be called with the same actual array supplied for the parameters B and X, in which case the solution matrix will overwrite the right-hand side matrix. However this is not standard Fortran and may not work in all implementations.

9 Example

This example solves the system of equations AX = B, where

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & 5 & 0 \\ 2 & 5 & 3 & 0 & 14 & 0 \\ 0 & 3 & 13 & 0 & 18 & 0 \\ 0 & 0 & 0 & 16 & 8 & 24 \\ 5 & 14 & 18 & 8 & 55 & 17 \\ 0 & 0 & 0 & 24 & 17 & 77 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 6 & -10 \\ 15 & -21 \\ 11 & -3 \\ 0 & 24 \\ 51 & -39 \\ 46 & 67 \end{pmatrix}$$

Here A is symmetric and positive definite and must first be factorized by F01MCF.

9.1 Program Text

```
Program f04mcfe
```

```
!
      FO4MCF Example Program Text
     Mark 24 Release. NAG Copyright 2012.
1
1
      .. Use Statements ..
     Use nag_library, Only: f01mcf, f04mcf, nag_wp
      .. Implicit None Statement ..
1
      Implicit None
      .. Parameters ..
1
      Integer, Parameter
                                        :: nin = 5, nout = 6
      .. Local Scalars ..
1
     Integer
                                        :: i, ifail, ir, iselct, k1, k2, lal,
                                                                                  &
                                           ldb, ldx, n
1
      .. Local Arrays ..
     Real (Kind=nag_wp), Allocatable
                                       :: a(:), al(:), b(:,:), d(:), x(:,:)
     Integer, Allocatable
                                        :: nrow(:)
1
      .. Executable Statements ..
      Write (nout,*) 'FO4MCF Example Program Results'
     Write (nout,*)
1
      Skip heading in data file
     Read (nin,*)
     Read (nin,*) n, ir
      ldb = n
      ldx = n
     Allocate (b(ldb,ir),d(n),x(ldx,ir),nrow(n))
     Read (nin,*) nrow(1:n)
      lal = 0
      Do i = 1, n
        lal = lal + nrow(i)
      End Do
     Allocate (a(lal),al(lal))
      k2 = 0
     Do i = 1, n
        k1 = k2 + 1
        k2 = k2 + nrow(i)
        Read (nin,*) a(k1:k2)
      End Do
     Read (nin,*)(b(i,1:ir),i=1,n)
1
      ifail: behaviour on error exit
              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
1
```

```
ifail = 0
Call f01mcf(n,a,lal,nrow,al,d,ifail)
iselct = 1
ifail = 0
Call f04mcf(n,al,lal,d,nrow,ir,b,ldb,iselct,x,ldx,ifail)
Write (nout,*) ' Solution'
Do i = 1, n
Write (nout,99999) x(i,1:ir)
End Do
99999 Format (1X,8F9.3)
End Program f04mcfe
```

9.2 Program Data

FO4MCF Example Program Data

```
6 2 : n, ir

1 2 2 1 5 3 : vector NROW

1.0

2.0 5.0

3.0 13.0

16.0

5.0 14.0 18.0 8.0 55.0

24.0 17.0 77.0 : vector A

6.0 -10.0

15.0 -21.0

11.0 -3.0

0.0 24.0

51.0 -39.0

46.0 67.0 : matrix B
```

9.3 Program Results

FO4MCF Example Program Results

Solution	
-3.000	4.000
2.000	-2.000
-1.000	3.000
-2.000	1.000
1.000	-2.000
1.000	1.000