Z01CFFP

NAG Parallel Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check for implementation-dependent details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

Z01CFFP computes the number of rows of a row block distributed matrix owned by a given processor. This utility routine is useful, for example, in the routines of Chapter F01.

2 Specification

```
INTEGER FUNCTION ZO1CFFP(P, M, I)
INTEGER P, M, I
```

3 Usage

3.1 Definitions

The following definitions are used in describing the data distribution within this document:

m_p	_	the number of rows in the Library Grid.
n_p	_	the number of columns in the Library Grid.
p	_	the total number of processors in the Library Grid.
p_d	_	the number of logical processors which hold rows of the matrix A
p_d	_	the number of logical processors which hold columns of the matrix A .
M_b	_	the blocking factor for the distribution of the rows of the matrix.
M_{ℓ}	_	the actual number of rows of the matrix A held locally on a logical
		processor where $0 \le M_x \le M_b$.
$\begin{bmatrix} x \end{bmatrix}$	_	the ceiling function of x , which gives the smallest integer greater than
• •		or equal to x.

3.2 Global and Local Arguments

The global input (output) arguments must (will) have the same value on entry (on exit) to (from) the routine on each processor:

Global input arguments: P, M

The remaining arguments are local.

The return value of the function is M_{ℓ} .

3.3 Distribution Strategy

Rows of the matrix A are allocated to logical processors on the 2-d grid row by row (i.e., in the row major ordering of the grid) starting from the $\{0,0\}$ logical processor. Each logical processor that contains rows of the matrix contains $M_b = \lceil m/p \rceil$ rows, except the last processor that actually contains data, for which the number of rows held may be less than M_b . This processor will contain $mod(m, M_b)$ rows if $mod(m, M_b) \neq 0$, and will contain M_b rows otherwise. Some logical processors may not contain any rows of the matrix if m is not large relative to p, but if $m > (p-1)^2$ then all processors will certainly contain rows of the matrix.

The number of logical processors that contain rows of the matrix is given by $p_d = \lceil n/M_b \rceil$.

4 Arguments

1: P — INTEGER

On entry: p, the number of processors.

[NP3344/3/pdf]

 $Global\ Input$

- 2: M INTEGER On entry: m, the number of rows of the matrix A.
- **3:** I INTEGER Local Input On entry: the identity of the local processor.

5 Errors and Warnings

Not applicable.

6 Further Comments

An example of the use of this routine is given in the example program for routine F01ZNFP, row block distribution of a two dimensional matrix.

7 References

None.

8 Example

None.

Global Input