nag_fresnel_s (s20acc)

1 Purpose

nag_fresnel_s (s20acc) returns a value for the Fresnel integral \(S(x) \).

2 Specification

```c
#include <nag.h>
#include <nags.h>

double nag_fresnel_s (double x)
```

3 Description

nag_fresnel_s (s20acc) evaluates an approximation to the Fresnel integral

\[
S(x) = \int_0^x \sin\left(\frac{\pi t^2}{2}\right) \, dt.
\]

Note: \(S(x) = -S(-x) \), so the approximation need only consider \(x \geq 0.0 \).

The function is based on three Chebyshev expansions:

For \(0 < x \leq 3 \),

\[
S(x) = x^3 \sum_{r=0} a_r T_r(t), \quad \text{with} \quad t = 2\left(\frac{x}{3}\right)^4 - 1.
\]

For \(x > 3 \),

\[
S(x) = \frac{1}{2} - f(x) \cos\left(\frac{\pi x^2}{2}\right) - g(x) \sin\left(\frac{\pi x^2}{2}\right),
\]

where \(f(x) = \sum_{r=0} b_r T_r(t) \),

and \(g(x) = \sum_{r=0} c_r T_r(t) \),

with \(t = 2\left(\frac{3}{x}\right)^4 - 1 \).

For small \(x \), \(S(x) \approx \frac{\pi}{6} x^3 \). This approximation is used when \(x \) is sufficiently small for the result to be correct to *machine precision*. For very small \(x \), this approximation would underflow; the result is then set exactly to zero.

For large \(x \), \(f(x) \approx \frac{1}{x} \) and \(g(x) \approx \frac{1}{x^2} \). Therefore for moderately large \(x \), when \(\frac{1}{x^2 x^3} \) is negligible compared with \(\frac{1}{x} \), the second term in the approximation for \(x > 3 \) may be dropped. For very large \(x \), when \(\frac{1}{x^2 x^3} \) becomes negligible, \(S(x) \approx \frac{1}{4} \). However there will be considerable difficulties in calculating \(\cos\left(\frac{\pi x^2}{2}\right) \) accurately before this final limiting value can be used. Since \(\cos\left(\frac{\pi x^2}{2}\right) \) is periodic, its value is essentially determined by the fractional part of \(x^2 \). If \(x^2 = N + \theta \) where \(N \) is an integer and \(0 \leq \theta < 1 \), then \(\cos\left(\frac{\pi x^2}{2}\right) \) depends on \(\theta \) and on \(N \) modulo 4. By exploiting this fact, it is possible to
retain significance in the calculation of \(\cos \left(\frac{\pi x^2}{2} \right) \) either all the way to the very large \(x \) limit, or at least until the integer part of \(\frac{x}{2} \) is equal to the maximum integer allowed on the machine.

4 References

5 Arguments
1: \(x - \text{double} \) \hspace{1cm} Input

On entry: the argument \(x \) of the function.

6 Error Indicators and Warnings
None.

7 Accuracy
Let \(\delta \) and \(\epsilon \) be the relative errors in the argument and result respectively.

If \(\delta \) is somewhat larger than the machine precision (i.e., if \(\delta \) is due to data errors etc.), then \(\epsilon \) and \(\delta \) are approximately related by:

\[
\epsilon \approx \left| \frac{x \sin \left(\frac{\pi x^2}{2} \right)}{S(x)} \right| \delta.
\]

Figure 1 shows the behaviour of the error amplification factor \(\left| \frac{x \sin \left(\frac{\pi x^2}{2} \right)}{S(x)} \right| \).

However if \(\delta \) is of the same order as the machine precision, then rounding errors could make \(\epsilon \) slightly larger than the above relation predicts.

For small \(x \), \(\epsilon \approx 3\delta \) and hence there is only moderate amplification of relative error. Of course for very small \(x \) where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of \(x \),

\[
|\epsilon| \approx \left| 2x \sin \left(\frac{\pi x^2}{2} \right) \right| |\delta|
\]

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of \(x \) (i.e., when \(\frac{1}{x^2} \) is of the order of the machine precision); in this region the relative error in the result is essentially bounded by \(\frac{2}{\pi x} \).

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.
8 Parallelism and Performance

nag_fresnel_s (s20acc) is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

/* nag_fresnel_s (s20acc) Example Program.
 *
 * NAGPRODCODE Version.
 *
 * Copyright 2016 Numerical Algorithms Group.
 *
 * Mark 26, 2016.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 double x, y;

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif

 // Rest of the code...
```c
#include <stdio.h>
#include <math.h>

#define _WIN32

int exit_status = 0;

int main()
{
    printf("nag_fresnel_s (s20acc) Example Program Results
";
    printf(" x y\n");
    #ifdef _WIN32
    while (scanf("%lf", &x) != EOF)
    #else
    while (scanf("%lf", &x) != EOF)
    #endif
    {
        /* nag_fresnel_s (s20acc).
         * Fresnel integral S(x)
         */
        y = nag_fresnel_s(x);
        printf("%12.3e%12.3e\n", x, y);
    }
    return exit_status;
}

10.2 Program Data

nag_fresnel_s (s20acc) Example Program Data

0.0
0.5
1.0
2.0
4.0
5.0
6.0
8.0
10.0
-1.0
1000.0

10.3 Program Results

nag_fresnel_s (s20acc) Example Program Results
 x y
0.000e+00 0.000e+00
5.000e-01 6.473e-02
1.000e+00 4.383e-01
2.000e+00 3.434e-01
4.000e+00 4.205e-01
5.000e+00 4.992e-01
6.000e+00 4.470e-01
8.000e+00 4.602e-01
1.000e+01 4.682e-01
-1.000e+00 -4.383e-01
1.000e+03 4.997e-01
```

The code snippet demonstrates a program that uses the `nag_fresnel_s` function from the NAG Library to compute the Fresnel integral. The program reads input values for `x` and calculates the corresponding `y` values using the Fresnel integral function. The results are printed in a tabular format. The program also includes a section for program data and results. The data section lists input values for `x` ranging from 0.0 to 1000.0, and the results section shows the computed values for `y` corresponding to each `x` value.
Example Program
Returns a Value for the Fresnel Integral $S(x)$