
NAG Library Function Document

nag_zero_cont_func_brent_rcomm (c05azc)

1 Purpose

nag_zero_cont_func_brent_rcomm (c05azc) locates a simple zero of a continuous function in a given
interval by using Brent's method, which is a combination of nonlinear interpolation, linear extrapolation
and bisection. It uses reverse communication for evaluating the function.

2 Specification

#include <nag.h>
#include <nagc05.h>

void nag_zero_cont_func_brent_rcomm (double *x, double *y, double fx,
double tolx, Nag_ErrorControl ir, double c[], Integer *ind,
NagError *fail)

3 Description

You must supply x and y to define an initial interval a; b½ � containing a simple zero of the function f xð Þ
(the choice of x and y must be such that f xð Þ � f yð Þ � 0:0). The function combines the methods of
bisection, nonlinear interpolation and linear extrapolation (see Dahlquist and BjÎrck (1974)), to find a
sequence of sub-intervals of the initial interval such that the final interval x; y½ � contains the zero and
x� yj j is less than some tolerance specified by tolx and ir (see Section 5). In fact, since the
intermediate intervals x; y½ � are determined only so that f xð Þ � f yð Þ � 0:0, it is possible that the final
interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous).
nag_zero_cont_func_brent_rcomm (c05azc) checks if the sign change is likely to correspond to a pole
of f and gives an error return in this case.

A feature of the algorithm used by this function is that unlike some other methods it guarantees
convergence within about log2 b� að Þ=�½ �ð Þ2 function evaluations, where � is related to the argument
tolx. See Brent (1973) for more details.

nag_zero_cont_func_brent_rcomm (c05azc) returns to the calling program for each evaluation of f xð Þ.
On each return you should set fx ¼ f xð Þ and call nag_zero_cont_func_brent_rcomm (c05azc) again.

The function is a modified version of procedure ‘zeroin’ given by Brent (1973).

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

Bus J C P and Dekker T J (1975) Two efficient algorithms with guaranteed convergence for finding a
zero of a function ACM Trans. Math. Software 1 330–345

Dahlquist G and BjÎrck Ð (1974) Numerical Methods Prentice–Hall

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits
and re-entries, and a final exit, as indicated by the argument ind. Between intermediate exits and re-
entries, all arguments other than fx must remain unchanged.

c05 – Roots of One or More Transcendental Equations c05azc

Mark 26 c05azc.1

1: x – double * Input/Output
2: y – double * Input/Output

On initial entry: x and y must define an initial interval a; b½ � containing the zero, such that
f xð Þ � f yð Þ � 0:0. It is not necessary that x < y.

On intermediate exit: x contains the point at which f must be evaluated before re-entry to the
function.

On final exit: x and y define a smaller interval containing the zero, such that f xð Þ � f yð Þ � 0:0,
and x� yj j satisfies the accuracy specified by tolx and ir, unless an error has occurred. If
fail:code ¼ NE_PROBABLE_POLE, x and y generally contain very good approximations to a
pole; if fail:code ¼ NW_TOO_MUCH_ACC_REQUESTED, x and y generally contain very
good approximations to the zero (see Section 6). If a point x is found such that f xð Þ ¼ 0:0, then
on final exit x ¼ y (in this case there is no guarantee that x is a simple zero). In all cases, the
value returned in x is the better approximation to the zero.

3: fx – double Input

On initial entry: if ind ¼ 1, fx need not be set.

If ind ¼ �1, fx must contain f xð Þ for the initial value of x.

On intermediate re-entry: must contain f xð Þ for the current value of x.

4: tolx – double Input

On initial entry: the accuracy to which the zero is required. The type of error test is specified by
ir.

Constraint: tolx > 0:0.

5: ir – Nag_ErrorControl Input

On initial entry: indicates the type of error test.

ir ¼ Nag Mixed
The test is: x� yj j � 2:0� tolx�max 1:0; xj jð Þ.

ir ¼ Nag Absolute
The test is: x� yj j � 2:0� tolx.

ir ¼ Nag Relative
The test is: x� yj j � 2:0� tolx� xj j.

Suggested value: ir ¼ Nag Mixed.

Constraint: ir ¼ Nag Mixed, Nag Absolute or Nag Relative.

6: c½17� – double Input/Output

On initial entry: if ind ¼ 1, no elements of c need be set.

If ind ¼ �1, c½0� must contain f yð Þ, other elements of c need not be set.

On final exit: is undefined.

7: ind – Integer * Input/Output

On initial entry: must be set to 1 or �1.

ind ¼ 1
fx and c½0� need not be set.

ind ¼ �1
fx and c½0� must contain f xð Þ and f yð Þ respectively.

c05azc NAG Library Manual

c05azc.2 Mark 26

On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at x, storing the
result in fx, and re-enter nag_zero_cont_func_brent_rcomm (c05azc) with all other arguments
unchanged.

On final exit: contains 0.

Constraint: on entry ind ¼ �1, 1, 2, 3 or 4.

8: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ind ¼ valueh i.
Constraint: ind ¼ �1, 1, 2, 3 or 4.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_SIGN_CHANGE

On entry, f xð Þ and f yð Þ have the same sign with neither equalling 0:0: f xð Þ ¼ valueh i and
f yð Þ ¼ valueh i.

NE_PROBABLE_POLE

The final interval may contain a pole rather than a zero. Note that this error exit is not completely
reliable: it may be taken in extreme cases when x; y½ � contains a zero, or it may not be taken
when x; y½ � contains a pole. Both these cases occur most frequently when tolx is large.

NE_REAL

On entry, tolx ¼ valueh i.
Constraint: tolx > 0:0.

NW_TOO_MUCH_ACC_REQUESTED

The tolerance tolx has been set too small for the problem being solved. However, the values x
and y returned may well be good approximations to the zero. tolx ¼ valueh i.

c05 – Roots of One or More Transcendental Equations c05azc

Mark 26 c05azc.3

7 Accuracy

The accuracy of the final value x as an approximation of the zero is determined by tolx and ir (see
Section 5). A relative accuracy criterion (ir ¼ 2) should not be used when the initial values x and y are
of different orders of magnitude. In this case a change of origin of the independent variable may be
appropriate. For example, if the initial interval x; y½ � is transformed linearly to the interval 1; 2½ �, then
the zero can be determined to a precise number of figures using an absolute (ir ¼ 1) or relative (ir ¼ 2)
error test and the effect of the transformation back to the original interval can also be determined.
Except for the accuracy check, such a transformation has no effect on the calculation of the zero.

8 Parallelism and Performance

nag_zero_cont_func_brent_rcomm (c05azc) is not threaded in any implementation.

9 Further Comments

For most problems, the time taken on each call to nag_zero_cont_func_brent_rcomm (c05azc) will be
negligible compared with the time spent evaluating f xð Þ between calls to nag_zero_cont_func_
brent_rcomm (c05azc).

If the calculation terminates because f xð Þ ¼ 0:0, then on return y is set to x. (In fact, y ¼ x on return
only in this case and, possibly, when fail:code ¼ NW_TOO_MUCH_ACC_REQUESTED.) There is no
guarantee that the value returned in x corresponds to a simple root and you should check whether it
does. One way to check this is to compute the derivative of f at the point x, preferably analytically, or,
if this is not possible, numerically, perhaps by using a central difference estimate. If f 0 xð Þ ¼ 0:0, then x
must correspond to a multiple zero of f rather than a simple zero.

10 Example

This example calculates a zero of e�x � x with an initial interval 0; 1½ �, tolx ¼ 1:0e�5 and a mixed
error test.

10.1 Program Text

/* nag_zero_cont_func_brent_rcomm (c05azc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
double fx, tolx, x, y;
Integer ind;
Nag_ErrorControl ir;
/* Arrays */
double c[17];
NagError fail;

INIT_FAIL(fail);

printf("nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results\n");
printf("\n Iterations\n");

c05azc NAG Library Manual

c05azc.4 Mark 26

tolx = 1e-05;
x = 0.0;
y = 1.0;
ir = Nag_Mixed;
ind = 1;
fx = 0.0;
/* nag_zero_cont_func_brent_rcomm (c05azc).
* Locates a simple zero of a continuous function.
* Reverse communication.
*/

while (ind != 0) {
nag_zero_cont_func_brent_rcomm(&x, &y, fx, tolx, ir, c, &ind, &fail);

if (ind != 0) {
fx = exp(-x) - x;
printf(" x = %8.5f fx = %13.4e ind = %2" NAG_IFMT "\n", x, fx, ind);

}
}

if (fail.code == NE_NOERROR) {
printf("\n Solution\n");
printf(" x = %8.5f y = %8.5f\n", x, y);

}
else {

printf("%s\n", fail.message);
if (fail.code == NE_PROBABLE_POLE ||

fail.code == NW_TOO_MUCH_ACC_REQUESTED) {
printf(" x = %8.5f y = %8.5f\n", x, y);

}
exit_status = 1;
goto END;

}

END:
return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results

Iterations
x = 0.00000 fx = 1.0000e+00 ind = 2
x = 1.00000 fx = -6.3212e-01 ind = 3
x = 0.61270 fx = -7.0814e-02 ind = 4
x = 0.56707 fx = 1.1542e-04 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4
x = 0.56713 fx = 1.4727e-05 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4

Solution
x = 0.56714 y = 0.56713

c05 – Roots of One or More Transcendental Equations c05azc

Mark 26 c05azc.5 (last)

	c05azc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brent (1973)
	Bus and Dekker (1975)
	Dahlquist and Bjorck (1974)

	5 Arguments
	x
	y
	fx
	tolx
	ir
	c
	ind
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_NOT_SIGN_CHANGE
	NE_PROBABLE_POLE
	NE_REAL
	NW_TOO_MUCH_ACC_REQUESTED

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

