f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_ztpsv (f16slc)

## 1  Purpose

nag_ztpsv (f16slc) solves a system of equations given as a complex triangular matrix stored in packed form.

## 2  Specification

 #include #include
 void nag_ztpsv (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer n, Complex alpha, const Complex ap[], Complex x[], Integer incx, NagError *fail)

## 3  Description

nag_ztpsv (f16slc) performs one of the matrix-vector operations
 $x←αA-1x , x←αA-Tx or x←αA-Hx ,$
where $A$ is an $n$ by $n$ complex triangular matrix, stored in packed form, $x$ is an $n$-element complex vector and $\alpha$ is a complex scalar. ${A}^{-\mathrm{T}}$ denotes ${A}^{-\mathrm{T}}$ or equivalently ${A}^{-\mathrm{T}}$; ${A}^{-\mathrm{H}}$ denotes ${\left({A}^{\mathrm{H}}\right)}^{-1}$ or equivalently ${\left({A}^{-1}\right)}^{H}$.
No test for singularity or near-singularity of $A$ is included in this function. Such tests must be performed before calling this function.

## 4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5  Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:    $\mathbf{trans}$Nag_TransTypeInput
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$x←\alpha {A}^{-1}x$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$
$x←\alpha {A}^{-\mathrm{T}}x$.
${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$
$x←\alpha {A}^{-\mathrm{H}}x$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, $\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
4:    $\mathbf{diag}$Nag_DiagTypeInput
On entry: specifies whether $A$ has nonunit or unit diagonal elements.
${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$
The diagonal elements are stored explicitly.
${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$
The diagonal elements are assumed to be $1$ and are not referenced.
Constraint: ${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$ or $\mathrm{Nag_UnitDiag}$.
5:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6:    $\mathbf{alpha}$ComplexInput
On entry: the scalar $\alpha$.
7:    $\mathbf{ap}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the $n$ by $n$ triangular matrix $A$, packed by rows or columns.
The storage of elements ${A}_{ij}$ depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(j-1\right)×j/2+i-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-j\right)×\left(j-1\right)/2+i-1\right]$, for $i\ge j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-i\right)×\left(i-1\right)/2+j-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(i-1\right)×i/2+j-1\right]$, for $i\ge j$.
If ${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$, the diagonal elements of $\mathrm{AP}$ are assumed to be $1$, and are not referenced; the same storage scheme is used whether ${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$ or ${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$.
8:    $\mathbf{x}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incx}}\right|\right)$.
On entry: the vector $x$.
On exit: the solution vector $x$.
9:    $\mathbf{incx}$IntegerInput
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
10:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INTERNAL_ERROR
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8  Parallelism and Performance

nag_ztpsv (f16slc) is not threaded in any implementation.

None.

## 10  Example

Solves complex triangular system of linear equations, $Ax=y$, where $A$ is a complex triangular $4$ by $4$ matrix, stored in packed storage format, given by
 $A = 4.78+4.56i 2.00-0.30i -4.11+1.25i 2.89-1.34i 2.36-4.25i 4.15+0.80i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-0.26i ,$
and
 $y = -14.78-32.36i 2.98-02.14i -20.96+17.06i 9.54+09.91i .$

### 10.1  Program Text

Program Text (f16slce.c)

### 10.2  Program Data

Program Data (f16slce.d)

### 10.3  Program Results

Program Results (f16slce.r)