f07 Chapter Contents
f07 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_zpotri (f07fwc)

## 1  Purpose

nag_zpotri (f07fwc) computes the inverse of a complex Hermitian positive definite matrix $A$, where $A$ has been factorized by nag_zpotrf (f07frc).

## 2  Specification

 #include #include
 void nag_zpotri (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[], Integer pda, NagError *fail)

## 3  Description

nag_zpotri (f07fwc) is used to compute the inverse of a complex Hermitian positive definite matrix $A$, the function must be preceded by a call to nag_zpotrf (f07frc), which computes the Cholesky factorization of $A$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $A={U}^{\mathrm{H}}U$ and ${A}^{-1}$ is computed by first inverting $U$ and then forming $\left({U}^{-1}\right){U}^{-\mathrm{H}}$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $A=L{L}^{\mathrm{H}}$ and ${A}^{-1}$ is computed by first inverting $L$ and then forming ${L}^{-\mathrm{H}}\left({L}^{-1}\right)$.

## 4  References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19

## 5  Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: specifies how $A$ has been factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A={U}^{\mathrm{H}}U$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A=L{L}^{\mathrm{H}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:    $\mathbf{a}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the upper triangular matrix $U$ if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or the lower triangular matrix $L$ if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, as returned by nag_zpotrf (f07frc).
On exit: $U$ is overwritten by the upper triangle of ${A}^{-1}$ if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$; $L$ is overwritten by the lower triangle of ${A}^{-1}$ if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$.
5:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:    $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
NE_SINGULAR
Diagonal element $〈\mathit{\text{value}}〉$ of the Cholesky factor is zero; the Cholesky factor is singular and the inverse of $A$ cannot be computed.

## 7  Accuracy

The computed inverse $X$ satisfies
 $XA-I2≤cnεκ2A and AX-I2≤cnεκ2A ,$
where $c\left(n\right)$ is a modest function of $n$, $\epsilon$ is the machine precision and ${\kappa }_{2}\left(A\right)$ is the condition number of $A$ defined by
 $κ2A=A2A-12 .$

## 8  Parallelism and Performance

nag_zpotri (f07fwc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of real floating-point operations is approximately $\frac{8}{3}{n}^{3}$.
The real analogue of this function is nag_dpotri (f07fjc).

## 10  Example

This example computes the inverse of the matrix $A$, where
 $A= 3.23+0.00i 1.51-1.92i 1.90+0.84i 0.42+2.50i 1.51+1.92i 3.58+0.00i -0.23+1.11i -1.18+1.37i 1.90-0.84i -0.23-1.11i 4.09+0.00i 2.33-0.14i 0.42-2.50i -1.18-1.37i 2.33+0.14i 4.29+0.00i .$
Here $A$ is Hermitian positive definite and must first be factorized by nag_zpotrf (f07frc).

### 10.1  Program Text

Program Text (f07fwce.c)

### 10.2  Program Data

Program Data (f07fwce.d)

### 10.3  Program Results

Program Results (f07fwce.r)