1 Purpose

nag_band_complx_mat_print_comp (x04dfc) prints a Complex band matrix.

2 Specification

```c
#include <nag.h>
#include <nagx04.h>

void nag_band_complx_mat_print_comp (Nag_OrderType order, Integer m,
                     Integer n, Integer kl, Integer ku, const Complex a[], Integer pda,
                     Nag_ComplexFormType cmplxform, const char *form, const char *title,
                     Nag_LabelType labrow, const char *rlabs[], Nag_LabelType labcol,
                     const char *clabs[], Integer ncols, Integer indent, const char *outfile,
                     NagError *fail)
```

3 Description

nag_band_complx_mat_print_comp (x04dfc) prints a Complex band matrix stored in packed form, using a format specifier supplied by you. The matrix is output to the file specified by `outfile` or, by default, to standard output.

4 References

None.

5 Arguments

1: `order` – Nag_OrderType

 On entry: the `order` argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by `order = Nag_RowMajor`. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: `order = Nag_RowMajor` or `Nag_ColMajor`.

2: `m` – Integer

3: `n` – Integer

 On entry: the number of rows and columns of the band matrix, respectively, to be printed.

 If either `m` or `n` is less than 1, nag_band_complx_mat_print_comp (x04dfc) will exit immediately after printing `title`; no row or column labels are printed.

4: `kl` – Integer

 On entry: the number of subdiagonals of the band matrix A.

 Constraint: $kl \geq 0$.

5: `ku` – Integer

 On entry: the number of superdiagonals of the band matrix A.

 Constraint: $ku \geq 0$.
6: \(a[\text{dim}] \) – const Complex

Input

Note: the dimension, \(\text{dim} \), of the array \(a \) must be at least

\[
\max(1, pda \times n) \text{ when } \text{order} = \text{Nag_ColMajor}; \\
\max(1, m \times pda) \text{ when } \text{order} = \text{Nag_RowMajor}.
\]

On entry: the band matrix to be printed.

This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(A_{ij} \), for row \(i = 1, \ldots, m \) and column \(j = \max(1, i - k_i), \ldots, \min(n, i + k_u) \), depends on the \text{order} argument as follows:

- If \(\text{order} = \text{Nag_ColMajor} \), \(A_{ij} \) is stored as \(a[(j - 1) \times pda + ku + i - j]; \)
- If \(\text{order} = \text{Nag_RowMajor} \), \(A_{ij} \) is stored as \(a[(i - 1) \times pda + kl + j - i]. \)

7: \(pda \) – Integer

Input

On entry: the stride separating row or column elements (depending on the value of \text{order} of the matrix \(A \) in the array \(a \).

Constraint: \(pda \geq kl + ku + 1. \)

8: \(\text{cmplxform} \) – Nag_ComplexFormType

Input

On entry: indicates how the value of \text{form} is to be used to print matrix elements.

- If \(\text{cmplxform} = \text{Nag_AboveForm} \), the format code in \text{form} is assumed to contain a single real edit-descriptor which is to be used to print the real and imaginary parts of each Complex number one above the other. Each row of the matrix is separated by a blank line, and any row labels are attached only to the real parts. This option means that about twice as many columns can be fitted into \(\text{ncols} \) characters than if any other \text{cmplxform} option is used. A typical value of \text{form} for this \text{cmplxform} option might be \%11.4e.

- If \(\text{cmplxform} = \text{Nag_BracketForm} \), the format code in \text{form} is assumed to contain a single edit-descriptor such as \%13.4f, * or NULL, which is used to print the real and imaginary parts of each Complex number separated by a comma, and surrounded by brackets. Thus a matrix element printed with this \text{cmplxform} option might look like this: \((12.345, -11.323)\).

- If \(\text{cmplxform} = \text{Nag_DirectForm} \), the format code in \text{form} is used unaltered to print a Complex number. This \text{cmplxform} option allows you flexibility to specify exactly how the number is printed. With this option for \text{cmplxform} and a suitable value for \text{form} it is possible, for example, to print a Complex number in the form \((0.123 + 3.214i)\) or \((0.123e-02, 0.234e-01)\).

Constraint: \(\text{cmplxform} \) = \text{Nag_AboveForm}, \text{Nag_BracketForm} or \text{Nag_DirectForm}.

9: \text{form} – const char *

Input

On entry: a valid C format code. This should be of the form \%[flag]ww.pp[format indicator], where \text{ww.pp} indicates that up to two digits may be used to specify the field width and precision respectively. Only \% and \text{format indicator} must be present. \text{flag} can be one of -, +, <space> or \# and \text{format indicator} can be e, E, f, g or G. Thus, possible formats include \%f, \%11.4G, \%6e. \text{form} is used in conjunction with argument \text{cmplxform}, to print elements of the matrix \(A \).

In addition, nag_band_complx_mat_print_comp (x04dzc) chooses its own format code when \text{form} is NULL or \text{form} = ‘*’.

If \text{form} = NULL, nag_band_complx_mat_print_comp (x04dzc) will choose a format code such that numbers will be printed with either a \%8.4f, a \%11.4f or a \%13.4e format. The \%8.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The \%11.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the \%13.4e code is chosen.
If `form = ' * '>`, nag_band_complx_mat_print_comp (x04dfc) will choose a format code such that numbers will be printed to as many significant digits as are necessary to distinguish between neighbouring machine numbers. Thus any two numbers that are stored with different internal representations should look different on output.

More complicated values of `form`, to print a Complex number in a desired form, may be used. See the description of argument `cmplxform` above for more details.

Constraint: if `cmplxform = Nag_AboveForm` or `Nag_BracketForm`, `form` must be of the form `%%[flag]ww:pp[format indicator]`.

10: **title** – const char * *Input*

On entry: a title to be printed above the matrix, or name of the matrix.

If `title = NULL`, no title (and no blank line) will be printed.

If `title` contains more than `ncols` characters, the contents of `title` will be wrapped onto more than one line, with the break after `ncols` characters.

Any trailing blank characters in `title` are ignored.

11: **labrow** – Nag_LabelType *Input*

On entry: indicates the type of labelling to be applied to the rows of the matrix.

`labrow = Nag_NoLabels`
Prints no row labels.

`labrow = Nag_IntegerLabels`
Prints integer row labels.

`labrow = Nag_CharacterLabels`
Prints character labels, which must be supplied in array `rlabs`.

Constraint: `labrow = Nag_NoLabels`, `Nag_IntegerLabels` or `Nag_CharacterLabels`.

12: **rlabs[dim]** – const char * *Input*

Note: the dimension, `dim`, of the array `rlabs` must be at least `m` when `labrow = Nag_CharacterLabels`; otherwise `rlabs` may be `NULL`.

On entry: if `labrow = Nag_CharacterLabels`, `rlabs` must contain labels for the rows of the matrix; otherwise `rlabs` is not referenced and may be `NULL`.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest row label. Note that this field width is subtracted from the number of usable columns, `ncols`.

13: **labcol** – Nag_LabelType *Input*

On entry: indicates the type of labelling to be applied to the columns of the matrix.

`labcol = Nag_NoLabels`
Prints no column labels.

`labcol = Nag_IntegerLabels`
Prints integer column labels.

`labcol = Nag_CharacterLabels`
Prints character labels, which must be supplied in array `clabs`.

Constraint: `labcol = Nag_NoLabels`, `Nag_IntegerLabels` or `Nag_CharacterLabels`.
14: \texttt{clabs[\textit{dim}] – const char * \hspace{1cm} Input}\n
\textbf{Note}: the dimension, \textit{dim}, of the array \texttt{clabs} must be at least \textit{n} when \texttt{labcol} = \texttt{Nag_CharacterLabels}; otherwise \texttt{clabs} may be \texttt{NULL}.

\textit{On entry}: if \texttt{labcol} = \texttt{Nag_CharacterLabels}, \texttt{clabs} must contain labels for the columns of the matrix; otherwise \texttt{clabs} is not referenced and may be \texttt{NULL}.

Labels are right-justified when output. Any label that is too long for the column width, which is determined by \texttt{form}, is truncated.

15: \texttt{ncols} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry}: the maximum output record length. If the number of columns of the matrix is too large to be accommodated in \texttt{ncols} characters, the matrix will be printed in parts, containing the largest possible number of matrix columns, and each part separated by a blank line.

\texttt{ncols} must be large enough to hold at least one column of the matrix using the format specifier in \texttt{form}. If a value less than or equal to 0 or greater than 132 is supplied for \texttt{ncols}, then the value 80 is used instead.

16: \texttt{indent} – Integer \hspace{1cm} \textit{Input}\n
\textit{On entry}: the number of columns by which the matrix (and any title and labels) should be indented. The effective value of \texttt{ncols} is reduced by \texttt{indent} columns. If a value less than 0 or greater than \texttt{ncols} is supplied for \texttt{indent}, the value 0 is used instead.

17: \texttt{outfile} – const char * \hspace{1cm} \textit{Input}\n
\textit{On entry}: the name of a file to which output will be directed. If \texttt{outfile} is \texttt{NULL} the output will be directed to standard output.

18: \texttt{fail} – \texttt{NagError *} \hspace{1cm} \textit{Input/Output}\n
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \hspace{1cm} \textbf{Error Indicators and Warnings}

\textbf{NE_ALLOC_FAIL}\n
Memory allocation failed.

\textbf{NE_BAD_PARAM}\n
On entry, argument \textit{\langle value\rangle} had an illegal value.

\textbf{NE_COL_WIDTH}\n
\textit{\langle value\rangle} is not wide enough to hold at least one matrix column, \texttt{ncols} = \textit{\langle value\rangle} and \texttt{indent} = \textit{\langle value\rangle}.

\textbf{NE_INTERNAL_ERROR}\n
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

\textbf{NE_INVALID_FORMAT}\n
The string \textit{\langle value\rangle} has not been recognized as a valid format.

\textbf{NE_NOT_APPEND_FILE}\n
Cannot open file \textit{\langle value\rangle} for appending.
NE_NOT_CLOSE_FILE
 Cannot close file \textit{value}.

NE_NOT_WRITE_FILE
 Cannot open file \textit{value} for writing.

7 Accuracy
 Not applicable.

8 Parallelism and Performance
 Not applicable.

9 Further Comments
 None.

10 Example
 See Section 10 in nag_zgbtrf (f07brc).