NAG Library Function Document

nag_pack_complx_mat_print (x04dcc)

1 Purpose
nag_pack_complx_mat_print (x04dcc) is an easy-to-use function to print a Complex triangular matrix stored in a packed one-dimensional array.

2 Specification
#include <nag.h>
#include <nagx04.h>

void nag_pack_complx_mat_print (Nag_OrderType order, Nag_UploType uplo,
 Nag_DiagType diag, Integer n, const Complex a[], const char *title,
 const char *outfile, NagError *fail)

3 Description
nag_pack_complx_mat_print (x04dcc) prints a Complex triangular matrix stored in packed form. It is an easy-to-use driver for nag_pack_complx_mat_print comp (x04dc). The function uses default values for the format in which numbers are printed, for labelling the rows and columns, and for output record length.

nag_pack_complx_mat_print (x04dcc) will choose a format code such that numbers will be printed with a %8.4f, a %11.4f or a %13.4e format. The %8.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The %11.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the %13.4e code is chosen. The chosen code is used to print each complex element of the matrix with the real part above the imaginary part.

The matrix is printed with integer row and column labels, and with a maximum record length of 80.

The matrix is output to the file specified by outfile or, by default, to standard output.

4 References
None.

5 Arguments

1: order – Nag_OrderType

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo – Nag_UploType

On entry: indicates the type of the matrix to be printed

uplo = Nag_Lower

The matrix is lower triangular
The matrix is upper triangular

Constraint: \(\text{uplo} = \text{Nag}_{\text{Lower}} \) or \(\text{Nag}_{\text{Upper}} \).

3: \[\text{diag} \rightarrow \text{Nag}_{\text{DiagType}} \]

Input

On entry: indicates whether the diagonal elements of the matrix are to be printed.

- \(\text{diag} = \text{Nag}_{\text{NonRefDiag}} \)
 The diagonal elements of the matrix are not referenced and not printed.
- \(\text{diag} = \text{Nag}_{\text{UnitDiag}} \)
 The diagonal elements of the matrix are not referenced, but are assumed all to be unity, and are printed as such.
- \(\text{diag} = \text{Nag}_{\text{NonUnitDiag}} \)
 The diagonal elements of the matrix are referenced and printed.

Constraint: \(\text{diag} = \text{Nag}_{\text{NonRefDiag}}, \text{Nag}_{\text{UnitDiag}} \) or \(\text{Nag}_{\text{NonUnitDiag}} \).

4: \[n \rightarrow \text{Integer} \]

Input

On entry: the order of the matrix to be printed.

If \(n \) is less than 1, \text{nag_pack_complx_mat_print} (x04dcc) will exit immediately after printing \text{title}; no row or column labels are printed.

5: \[a[\text{dim}] \rightarrow \text{const Complex} \]

Input

Note: the dimension, \(\text{dim} \), of the array \(a \) must be at least \(\max(1, n \times (n + 1)/2) \).

On entry: the matrix to be printed. Note that \(a \) must have space for the diagonal elements of the matrix, even if these are not stored.

The storage of elements \(A_{ij} \) depends on the \text{order} and \text{uplo} arguments as follows:

- If \(\text{order} = \text{Nag}_{\text{ColMajor}} \) and \(\text{uplo} = \text{Nag}_{\text{Upper}} \), \(A_{ij} \) is stored in \(a[(j - 1) \times j/2 + i - 1] \), for \(i \leq j \);
- If \(\text{order} = \text{Nag}_{\text{ColMajor}} \) and \(\text{uplo} = \text{Nag}_{\text{Lower}} \), \(A_{ij} \) is stored in \(a[(2n - j) \times (j - 1)/2 + i - 1] \), for \(i \geq j \);
- If \(\text{order} = \text{Nag}_{\text{RowMajor}} \) and \(\text{uplo} = \text{Nag}_{\text{Upper}} \), \(A_{ij} \) is stored in \(a[(2n - i) \times (i - 1)/2 + j - 1] \), for \(i \leq j \);
- If \(\text{order} = \text{Nag}_{\text{RowMajor}} \) and \(\text{uplo} = \text{Nag}_{\text{Lower}} \), \(A_{ij} \) is stored in \(a[(i - 1) \times i/2 + j - 1] \), for \(i \geq j \).

If \(\text{diag} = \text{Nag}_{\text{UnitDiag}} \), the diagonal elements of \(A \) are assumed to be 1, and are not referenced; the same storage scheme is used whether \(\text{diag} = \text{Nag}_{\text{NonUnitDiag}} \) or \(\text{diag} = \text{Nag}_{\text{UnitDiag}} \).

6: \[\text{title} \rightarrow \text{const char *} \]

Input

On entry: a title to be printed above the matrix.

If \(\text{title} = \text{NULL} \), no title (and no blank line) will be printed.

If \(\text{title} \) contains more than 80 characters, the contents of \(\text{title} \) will be wrapped onto more than one line, with the break after 80 characters.

Any trailing blank characters in \(\text{title} \) are ignored.

7: \[\text{outfile} \rightarrow \text{const char *} \]

Input

On entry: the name of a file to which output will be directed. If \(\text{outfile} \) is \text{NULL} the output will be directed to standard output.
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Memory allocation failed.

NE_BAD_PARAM
On entry, argument 〈value〉 had an illegal value.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NOT_APPEND_FILE
Cannot open file 〈value〉 for appending.

NE_NOT_CLOSE_FILE
Cannot close file 〈value〉.

NE_NOT_WRITE_FILE
Cannot open file 〈value〉 for writing.

7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
A call to nag_pack_complx_mat_print (x04dcc) is equivalent to a call to nag_pack_complx_mat_print_comp (x04ddc) with the following argument values:

```c
ncols = 80
indent = 0
labrow = Nag_IntegerLabels
labcol = Nag_IntegerLabels
form = 0
cmplxform = Nag_AboveForm
```

10 Example
None.