1 Purpose

nag_band_real_mat_print_comp (x04cfc) prints a double band matrix.

2 Specification

```c
#include <nag.h>
#include <nagx04.h>

void nag_band_real_mat_print_comp (Nag_OrderType order, Integer m,
   Integer n, Integer kl, Integer ku, const double a[], Integer pda,
   const char *form, const char *title, Nag_LabelType labrow,
   const char *rlabs[], Nag_LabelType labcol, const char *clabs[],
   Integer ncols, Integer indent, const char *outfile, NagError *fail)
```

3 Description

nag_band_real_mat_print_comp (x04cfc) prints a double band matrix stored in packed form, using a format specifier supplied by you. The matrix is output to the file specified by `outfile` or, by default, to standard output.

4 References

None.

5 Arguments

1: \textbf{order} – Nag_OrderType \hspace{1cm} \textit{Input}

\textit{On entry}: the \texttt{order} argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by \texttt{order = Nag_RowMajor}. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

\textit{Constraint}: \texttt{order = Nag_RowMajor} or \texttt{Nag_ColMajor}.

2: \textbf{m} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the number of rows and columns of the band matrix, respectively, to be printed. If either \texttt{m} or \texttt{n} is less than 1, nag_band_real_mat_print_comp (x04cfc) will exit immediately after printing \texttt{title}; no row or column labels are printed.

3: \textbf{n} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the number of rows and columns of the band matrix, respectively, to be printed. If either \texttt{m} or \texttt{n} is less than 1, nag_band_real_mat_print_comp (x04cfc) will exit immediately after printing \texttt{title}; no row or column labels are printed.

4: \textbf{kl} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the number of subdiagonals of the band matrix \texttt{A}.

\textit{Constraint}: \texttt{kl} \geq 0.

5: \textbf{ku} – Integer \hspace{1cm} \textit{Input}

\textit{On entry}: the number of superdiagonals of the band matrix \texttt{A}.

\textit{Constraint}: \texttt{ku} \geq 0.
\(a[\text{dim}]\) \(\rightarrow\) const double \(\text{Input}\)

Note: the dimension, \(\text{dim}\), of the array \(a\) must be at least \(\max(1, pda \times n)\) when \(\text{order} = \text{Nag_ColMajor}\); \(\max(1, m \times pda)\) when \(\text{order} = \text{Nag_RowMajor}\).

On entry: the band matrix to be printed.

This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements \(A_{ij}\), for row \(i = 1, \ldots, m\) and column \(j = \max(1, i - k_l), \ldots, \min(n, i + k_u)\), depends on the \(\text{order}\) argument as follows:

- if \(\text{order} = \text{Nag_ColMajor}\), \(A_{ij}\) is stored as \(a[(j-1) \times pda + ku + i - j]\);
- if \(\text{order} = \text{Nag_RowMajor}\), \(A_{ij}\) is stored as \(a[(i-1) \times pda + kl + j - i]\).

\(pda\) \(\rightarrow\) Integer \(\text{Input}\)

On entry: the stride separating row or column elements (depending on the value of \(\text{order}\)) of the matrix \(A\) in the array \(a\).

Constraint: \(pda \geq kl + ku + 1\).

\(\text{form}\) \(\rightarrow\) const char * \(\text{Input}\)

On entry: a valid C format code. This should be of the form \(\%[\text{flag}\]ww:pp[\text{format indicator}]\), where \(ww:pp\) indicates that up to two digits may be used to specify the field width and precision respectively. Only \(\%\) and \(\text{format indicator}\) must be present. \(\text{flag}\) can be one of -, +, < space > or \# and \(\text{format indicator}\) can be e, E, f, g or G. Thus, possible formats include %f, %+23.15G, %.6e. \(\text{form}\) is used to print elements of the matrix \(A\).

In addition, \text{nag_band_real_mat_print_comp} (x04cfc) chooses its own format code when \(\text{form}\) is \(\text{NULL}\) or \(\text{form} = ' '*\).

\(\text{form} = \text{NULL}\)

\text{nag_band_real_mat_print_comp} (x04cfc) will choose a format code such that numbers will be printed with either a %8.4f, a %11.4f or a %13.4e format. The %8.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The %11.4f code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the %13.4e code is chosen.

\(\text{form} = ' '*\)

\text{nag_band_real_mat_print_comp} (x04cfc) will choose a format code such that numbers will be printed to as many significant digits as are necessary to distinguish between neighbouring machine numbers. Thus any two numbers that are stored with different internal representations should look different on output.

Constraint: \(\text{form}\) must be of the form \(\%[\text{flag}\]ww:pp[\text{format indicator}]\).

\(\text{title}\) \(\rightarrow\) const char * \(\text{Input}\)

On entry: a title to be printed above the matrix, or name of the matrix.

If \(\text{title} = \text{NULL}\), no title (and no blank line) will be printed.

If \(\text{title}\) contains more than \(\text{ncols}\) characters, the contents of \(\text{title}\) will be wrapped onto more than one line, with the break after \(\text{ncols}\) characters.

Any trailing blank characters in \(\text{title}\) are ignored.

\(\text{labrow}\) \(\rightarrow\) Nag_LabelType \(\text{Input}\)

On entry: indicates the type of labelling to be applied to the rows of the matrix.

\(\text{labrow} = \text{Nag_NoLabels}\)

Prints no row labels.
labrow = Nag_IntegerLabels
 Prints integer row labels.

labrow = Nag_CharacterLabels
 Prints character labels, which must be supplied in array rlabs.

Constraint: labrow = Nag_NoLabels, Nag_IntegerLabels or Nag_CharacterLabels.

11: rlabs[dim] – const char * Input

Note: the dimension, dim, of the array rlabs must be at least
 m when labrow = Nag_CharacterLabels;
 otherwise rlabs may be NULL.

On entry: if labrow = Nag_CharacterLabels, rlabs must contain labels for the rows of the matrix;
 otherwise rlabs is not referenced and may be NULL.

Labels are right-justified when output, in a field which is as wide as necessary to hold the longest
row label. Note that this field width is subtracted from the number of usable columns, ncols.

12: labcol – Nag_LabelType Input

On entry: indicates the type of labelling to be applied to the columns of the matrix.

labcol = Nag_NoLabels
 Prints no column labels.

labcol = Nag_IntegerLabels
 Prints integer column labels.

labcol = Nag_CharacterLabels
 Prints character labels, which must be supplied in array clabs.

Constraint: labcol = Nag_NoLabels, Nag_IntegerLabels or Nag_CharacterLabels.

13: clabs[dim] – const char * Input

Note: the dimension, dim, of the array clabs must be at least
 n when labcol = Nag_CharacterLabels;
 otherwise clabs may be NULL.

On entry: if labcol = Nag_CharacterLabels, clabs must contain labels for the columns of the matrix;
 otherwise clabs is not referenced and may be NULL.

Labels are right-justified when output. Any label that is too long for the column width, which is
determined by form, is truncated.

14: ncols – Integer Input

On entry: the maximum output record length. If the number of columns of the matrix is too large
to be accommodated in ncols characters, the matrix will be printed in parts, containing the largest
possible number of matrix columns, and each part separated by a blank line.

ncols must be large enough to hold at least one column of the matrix using the format specifier in
form. If a value less than or equal to 0 or greater than 132 is supplied for ncols, then the value 80
is used instead.

15: indent – Integer Input

On entry: the number of columns by which the matrix (and any title and labels) should be
indented. The effective value of ncols is reduced by indent columns. If a value less than 0 or
greater than ncols is supplied for indent, the value 0 is used instead.
16: **outfile** – const char *

Input

On entry: the name of a file to which output will be directed. If `outfile` is **NULL** the output will be directed to standard output.

17: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, argument *(value)* had an illegal value.

NE_COL_WIDTH

(value) is not wide enough to hold at least one matrix column. \(\text{ncols} = (\text{value})\) and \(\text{indent} = (\text{value})\).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_INVALID_FORMAT

The string *(value)* has not been recognized as a valid format.

NE_NOT_APPEND_FILE

Cannot open file *(value)* for appending.

NE_NOT_CLOSE_FILE

Cannot close file *(value)*.

NE_NOT_WRITE_FILE

Cannot open file *(value)* for writing.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

None.