NAG Library Function Document
nag_lookback_fls_greeks (s30bbc)

1 Purpose
nag_lookback_fls_greeks (s30bbc) computes the price of a floating-strike lookback option together with its sensitivities (Greeks).

2 Specification
#include <nag.h>
#include <nags.h>
void nag_lookback_fls_greeks (Nag_OrderType order, Nag_CallPut option,
Integer m, Integer n, const double sm[], double s, const double t[],
double sigma, double r, double q, double p[], double delta[],
double gamma[], double vega[], double theta[], double rho[],
double crho[], double vanna[], double charm[], double speed[],
double colour[], double zomma[], double vomma[], NagError *fail)

3 Description
nag_lookback_fls_greeks (s30bbc) computes the price of a floating-strike lookback call or put option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. A call option of this type confers the right to buy the underlying asset at the lowest price, \(S_{\text{min}} \), observed during the lifetime of the contract. A put option gives the holder the right to sell the underlying asset at the maximum price, \(S_{\text{max}} \), observed during the lifetime of the contract. Thus, at expiry, the payoff for a call option is \(\frac{S}{C_0} S_{\text{min}} \), and for a put, \(\frac{S_{\text{max}}}{C_0} \).

For a given minimum value the price of a floating-strike lookback call with underlying asset price, \(S \), and time to expiry, \(T \), is

\[
P_{\text{call}} = S e^{-rqT} \Phi(a_1) - S_{\text{min}} e^{-rqT} \Phi(a_2) + S e^{-rqT} \frac{\sigma^2}{2b} \left(\frac{S}{S_{\text{min}}} \right)^{-2b/\sigma^2} \Phi \left(-a_1 + \frac{2b}{\sigma} \sqrt{T} \right) - e^{brT} \Phi(-a_1),
\]

where \(b = r - q \neq 0 \). The volatility, \(\sigma \), risk-free interest rate, \(r \), and annualised dividend yield, \(q \), are constants.

The corresponding put price is

\[
P_{\text{put}} = S_{\text{max}} e^{-rqT} \Phi(-a_2) - S e^{-rqT} \Phi(-a_1) + S e^{-rqT} \frac{\sigma^2}{2b} \left(\frac{S}{S_{\text{max}}} \right)^{-2b/\sigma^2} \Phi \left(a_1 - \frac{2b}{\sigma} \sqrt{T} \right) + e^{brT} \Phi(a_1).
\]

In the above, \(\Phi \) denotes the cumulative Normal distribution function,

\[
\Phi(x) = \int_{-\infty}^{x} \phi(y) \, dy
\]

where \(\phi \) denotes the standard Normal probability density function

\[
\phi(y) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{y^2}{2} \right)
\]

and

\[
a_1 = \frac{\ln(S/S_{\text{min}}) + (b + \sigma^2/2)T}{\sigma \sqrt{T}}
\]

\[
a_2 = a_1 - \sigma \sqrt{T}
\]
where S_m is taken to be the minimum price attained by the underlying asset, S_{min}, for a call and the maximum price, S_{max}, for a put.

The option price $P_{ij} = P(X = X_i, T = T_j)$ is computed for each minimum or maximum observed price in a set $S_{\text{min}}(i)$ or $S_{\text{max}}(i)$, $i = 1, 2, \ldots, m$, and for each expiry time in a set T_j, $j = 1, 2, \ldots, n$.

4 References
Goldman B M, Sosin H B and Gatto M A (1979) Path dependent options: buy at the low, sell at the high Journal of Finance 34 1111–1127

5 Arguments
1: order – Nag_OrderType

 On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

 Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: option – Nag_CallPut

 On entry: determines whether the option is a call or a put.

 option = Nag_Call
 A call; the holder has a right to buy.

 option = Nag_Put
 A put; the holder has a right to sell.

 Constraint: option = Nag_Call or Nag_Put.

3: m – Integer

 On entry: the number of minimum or maximum prices to be used.

 Constraint: $m \geq 1$.

4: n – Integer

 On entry: the number of times to expiry to be used.

 Constraint: $n \geq 1$.

5: sm$[m]$ – const double

 On entry: $sm[i-1]$ must contain $S_{\text{min}}(i)$, the ith minimum observed price of the underlying asset when option = Nag_Call, or $S_{\text{max}}(i)$, the maximum observed price when option = Nag_Put, for $i = 1, 2, \ldots, m$.

 Constraints:

 $sm[i-1] \geq z$ and $sm[i-1] \leq 1/z$, where $z = \text{nag_real_safe_small_number}$, the safe range parameter, for $i = 1, 2, \ldots, m$;

 if option = Nag_Call, $sm[i-1] \leq S$, for $i = 1, 2, \ldots, m$;

 if option = Nag_Put, $sm[i-1] \geq S$, for $i = 1, 2, \ldots, m$.

6: s – double

 On entry: S, the price of the underlying asset.

 Constraint: $s \geq z$ and $s \leq 1.0/z$, where $z = \text{nag_real_safe_small_number}$, the safe range parameter.
7: \(t[n] \) – const double

Input

On entry: \(t[i - 1] \) must contain \(T_i \), the \(i \)th time, in years, to expiry, for \(i = 1, 2, \ldots, n \).

Constraint: \(t[i - 1] \geq z \), where \(z = \text{nag_real_safe_small_number} \), the safe range parameter, for \(i = 1, 2, \ldots, n \).

8: \(\text{sigma} \) – double

Input

On entry: \(\sigma \), the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.

Constraint: \(\text{sigma} > 0.0 \).

9: \(r \) – double

Input

On entry: the annual risk-free interest rate, \(r \), continuously compounded. Note that a rate of 5% should be entered as 0.05.

Constraint: \(r \geq 0.0 \) and \(\text{abs}(r - q) > 10 \times \text{eps} \times \text{max}(\text{abs}(r), 1) \), where \(\text{eps} = \text{nag_machine_precision} \), the *machine precision*.

10: \(q \) – double

Input

On entry: the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: \(q \geq 0.0 \) and \(\text{abs}(r - q) > 10 \times \text{eps} \times \text{max}(\text{abs}(r), 1) \), where \(\text{eps} = \text{nag_machine_precision} \), the *machine precision*.

11: \(p[m \times n] \) – double

Output

Note: where \(P(i, j) \) appears in this document, it refers to the array element

\[p[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[p[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: \(P(i, j) \) contains \(P_{ij} \), the option price evaluated for the minimum or maximum observed price \(S_{\text{min}}(i) \) or \(S_{\text{max}}(i) \) at expiry \(t_j \) for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

12: \(\text{delta}[m \times n] \) – double

Output

Note: the \((i, j) \)th element of the matrix is stored in

\[\text{delta}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{delta}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: the \(m \times n \) array \(\text{delta} \) contains the sensitivity, \(\frac{\partial P}{\partial S} \), of the option price to change in the price of the underlying asset.

13: \(\text{gamma}[m \times n] \) – double

Output

Note: the \((i, j) \)th element of the matrix is stored in

\[\text{gamma}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{gamma}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: the \(m \times n \) array \(\text{gamma} \) contains the sensitivity, \(\frac{\partial^2 P}{\partial S^2} \), of \(\text{delta} \) to change in the price of the underlying asset.

14: \(\text{vega}[m \times n] \) – double

Output

Note: where \(\text{VEGA}(i, j) \) appears in this document, it refers to the array element

\[\text{vega}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{vega}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]
On exit: \(\text{VEGA}(i,j) \), contains the first-order Greek measuring the sensitivity of the option price \(P_{ij} \) to change in the volatility of the underlying asset, i.e., \(\frac{\partial P_{ij}}{\partial \sigma} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \).

15: \(\text{theta}[m \times n] \) – double

Output

Note: where \(\text{THETA}(i,j) \) appears in this document, it refers to the array element

\[
\text{theta}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{theta}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]

On exit: \(\text{THETA}(i,j) \), contains the first-order Greek measuring the sensitivity of the option price \(P_{ij} \) to change in time, i.e., \(-\frac{\partial P_{ij}}{\partial t} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \), where \(b = r - q \).

16: \(\text{rho}[m \times n] \) – double

Output

Note: where \(\text{RHO}(i,j) \) appears in this document, it refers to the array element

\[
\text{rho}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{rho}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]

On exit: \(\text{RHO}(i,j) \), contains the first-order Greek measuring the sensitivity of the option price \(P_{ij} \) to change in the annual risk-free interest rate, i.e., \(-\frac{\partial P_{ij}}{\partial r} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \).

17: \(\text{crho}[m \times n] \) – double

Output

Note: where \(\text{CRHO}(i,j) \) appears in this document, it refers to the array element

\[
\text{crho}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{crho}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]

On exit: \(\text{CRHO}(i,j) \), contains the first-order Greek measuring the sensitivity of the option price \(P_{ij} \) to change in the annual cost of carry rate, i.e., \(-\frac{\partial P_{ij}}{\partial c} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \), where \(b = r - q \).

18: \(\text{vanna}[m \times n] \) – double

Output

Note: where \(\text{VANNA}(i,j) \) appears in this document, it refers to the array element

\[
\text{vanna}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{vanna}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]

On exit: \(\text{VANNA}(i,j) \), contains the second-order Greek measuring the sensitivity of the first-order Greek \(\Delta_{ij} \) to change in the volatility of the asset price, i.e., \(-\frac{\Delta_{ij}}{\partial \sigma^2} = -\frac{\partial^2 P_{ij}}{\partial \sigma^2} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \).

19: \(\text{charm}[m \times n] \) – double

Output

Note: where \(\text{CHARM}(i,j) \) appears in this document, it refers to the array element

\[
\text{charm}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{charm}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]

On exit: \(\text{CHARM}(i,j) \), contains the second-order Greek measuring the sensitivity of the first-order Greek \(\Delta_{ij} \) to change in the time, i.e., \(-\frac{\Delta_{ij}}{\partial t} = -\frac{\partial^2 P_{ij}}{\partial t^2} \), for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,n \).

20: \(\text{speed}[m \times n] \) – double

Output

Note: where \(\text{SPEED}(i,j) \) appears in this document, it refers to the array element

\[
\text{speed}[(j - 1) \times m + i - 1] \quad \text{when \ order} = \text{Nag_ColMajor};
\]

\[
\text{speed}[(i - 1) \times n + j - 1] \quad \text{when \ order} = \text{Nag_RowMajor}.
\]
On exit: \(\text{SPEED}(i, j) \), contains the third-order Greek measuring the sensitivity of the second-order Greek \(\Gamma_{ij} \) to change in the price of the underlying asset, i.e., \(-\frac{\partial \Gamma_{ij}}{\partial S} = -\frac{\partial P_i}{\partial S} \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

21: \(\text{colour}[m \times n] \) – double

\[\text{Output} \]

Note: where \(\text{COLOUR}(i, j) \) appears in this document, it refers to the array element
\[\text{colour}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{colour}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: \(\text{COLOUR}(i, j) \), contains the third-order Greek measuring the sensitivity of the second-order Greek \(\Gamma_{ij} \) to change in the time, i.e., \(-\frac{\partial \Gamma_{ij}}{\partial T} = -\frac{\partial P_i}{\partial T} \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

22: \(\text{zomma}[m \times n] \) – double

\[\text{Output} \]

Note: where \(\text{ZOMMA}(i, j) \) appears in this document, it refers to the array element
\[\text{zomma}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{zomma}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: \(\text{ZOMMA}(i, j) \), contains the third-order Greek measuring the sensitivity of the second-order Greek \(\Gamma_{ij} \) to change in the volatility of the underlying asset, i.e., \(-\frac{\partial \Gamma_{ij}}{\partial \sigma} = -\frac{\partial P_i}{\partial \sigma} \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

23: \(\text{vomma}[m \times n] \) – double

\[\text{Output} \]

Note: where \(\text{VOMMA}(i, j) \) appears in this document, it refers to the array element
\[\text{vomma}[(j - 1) \times m + i - 1] \text{ when } \text{order} = \text{Nag_ColMajor}; \]
\[\text{vomma}[(i - 1) \times n + j - 1] \text{ when } \text{order} = \text{Nag_RowMajor}. \]

On exit: \(\text{VOMMA}(i, j) \), contains the second-order Greek measuring the sensitivity of the first-order Greek \(\Delta_{ij} \) to change in the volatility of the underlying asset, i.e., \(-\frac{\partial \Delta_{ij}}{\partial \sigma} = -\frac{\partial P_i}{\partial \sigma} \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

24: \(\text{fail} \) – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \langle value \rangle had an illegal value.

\textbf{NE_INT}

On entry, \(m = \langle value \rangle \).
Constraint: \(m \geq 1 \).
On entry, \(n = \langle value \rangle \).
Constraint: \(n \geq 1 \).

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, \(q = \langle value\rangle\).
Constraint: \(q \geq 0.0\).

On entry, \(r = \langle value\rangle\).
Constraint: \(r \geq 0.0\).

On entry, \(s = \langle value\rangle\).
Constraint: \(s \geq \langle value\rangle\) and \(s \leq \langle value\rangle\).

On entry, \(\sigma = \langle value\rangle\).
Constraint: \(\sigma > 0.0\).

NE_REAL_2

On entry, \(r = \langle value\rangle\) and \(q = \langle value\rangle\).
Constraint: \(|r - q| > 10 \times \text{eps} \times \max(|r|, 1)|\), where \(\text{eps}\) is the *machine precision*.

NE_REAL_ARRAY

On entry, \(\text{sm}[i] = \langle value\rangle\).
Constraint: \(\langle value\rangle \leq \text{sm}[i] \leq \langle value\rangle\) for all \(i\).

On entry, \(t[i] = \langle value\rangle\).
Constraint: \(t[i] \geq \langle value\rangle\) for all \(i\).

On entry with a call option, \(\text{sm}[i] = \langle value\rangle\).
Constraint: for call options, \(\text{sm}[i] \leq \langle value\rangle\) for all \(i\).

On entry with a put option, \(\text{sm}[i] = \langle value\rangle\).
Constraint: for put options, \(\text{sm}[i] \geq \langle value\rangle\) for all \(i\).

7 **Accuracy**

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, \(\Phi\). This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the *machine precision* (see \text{nag cumul normal} (s15abc) and \text{nag erfc} (s15adc)). An accuracy close to *machine precision* can generally be expected.

8 **Parallelism and Performance**

\text{nag lookback_fls_greeks} (s30bbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 **Further Comments**

None.
10 Example

This example computes the price of a floating-strike lookback put with a time to expiry of 6 months and a stock price of 87. The maximum price observed so far is 100. The risk-free interest rate is 6\% per year and the volatility is 30\% per year with an annual dividend return of 4\%.

10.1 Program Text

```c
/* nag_lookback_fls_greeks (s30bbc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 9, 2009. */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
    /* Integer scalar and array declarations */
    Integer exit_status = 0;
    Integer i, j, m, n;
    NagError fail;
    Nag_CallPut putnum;

    /* Double scalar and array declarations */
    double q, r, s, sigma;
    double *charm = 0, *colour = 0, *crho = 0, *delta = 0, *gamma = 0;
    double *p = 0, *rho = 0, *sm = 0, *speed = 0, *t = 0, *theta = 0;
    double *vanna = 0, *vega = 0, *vomma = 0, *zomma = 0;

    /* Character scalar and array declarations */
    char put[8+1];
    Nag_OrderType order;

    INIT_FAIL(fail);
    printf("nag_lookback_fls_greeks (s30bbc) Example Program Results\n");
    printf("Floating-Strike Lookback\n\n");
    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n ]");
    #else
    scanf("%*[\n ]");
    #endif
    /* Read put */
    #ifdef _WIN32
    scanf_s("%8s%*[\n ]", put, _countof(put));
    #else
    scanf("%8s%*[\n ]", put);
    #endif
    /* nag_enum_name_to_value (x04nac). */
    putnum = (Nag_CallPut) nag_enum_name_to_value(put);
    /* Read sigma, r, s, jvol */
    #ifdef _WIN32
    scanf_s("%lf%lf%lf%lf%*[\n ]", &s, &sigma, &r, &q);
    #else
    scanf("%lf%lf%lf%lf%*[\n ]", &s, &sigma, &r, &q);
    #endif
    /* Read m, n */
    #ifdef _WIN32
    scanf_s("%lf%lf%lf%lf%*[\n ]", &m, &n);
    #else
    scanf("%lf%lf%lf%lf%*[\n ]", &m, &n);
    #endif
}
```
#ifndef NAG_COLUMN_MAJOR
#define CHARM(I, J) charm[(J-1)*m + I-1]
#define COLOUR(I, J) colour[(J-1)*m + I-1]
#define CRHO(I, J) crho[(J-1)*m + I-1]
#define DELTA(I, J) delta[(J-1)*m + I-1]
#define GAMMA(I, J) gamma[(J-1)*m + I-1]
#define P(I, J) p[(J-1)*m + I-1]
#define RHO(I, J) rho[(J-1)*m + I-1]
#define SPEED(I, J) speed[(J-1)*m + I-1]
#define THETA(I, J) theta[(J-1)*m + I-1]
#define VANNA(I, J) vanna[(J-1)*m + I-1]
#define VEGA(I, J) vega[(J-1)*m + I-1]
#define VOMMA(I, J) vomma[(J-1)*m + I-1]
#define ZOMMA(I, J) zomma[(J-1)*m + I-1]
#endif

#ifdef NAG_COLUMN_MAJOR
#define CHARM(I, J) charm[(J-1)*m + I-1]
#define COLOUR(I, J) colour[(J-1)*m + I-1]
#define CRHO(I, J) crho[(J-1)*m + I-1]
#define DELTA(I, J) delta[(J-1)*m + I-1]
#define GAMMA(I, J) gamma[(J-1)*m + I-1]
#define P(I, J) p[(J-1)*m + I-1]
#define RHO(I, J) rho[(J-1)*m + I-1]
#define SPEED(I, J) speed[(J-1)*m + I-1]
#define THETA(I, J) theta[(J-1)*m + I-1]
#define VANNA(I, J) vanna[(J-1)*m + I-1]
#define VEGA(I, J) vega[(J-1)*m + I-1]
#define VOMMA(I, J) vomma[(J-1)*m + I-1]
#define ZOMMA(I, J) zomma[(J-1)*m + I-1]
#endif

order = Nag_ColMajor;
#else
#define CHARM(I, J) charm[(I-1)*n + J-1]
#define COLOUR(I, J) colour[(I-1)*n + J-1]
#define CRHO(I, J) crho[(I-1)*n + J-1]
#define DELTA(I, J) delta[(I-1)*n + J-1]
#define GAMMA(I, J) gamma[(I-1)*n + J-1]
#define P(I, J) p[(I-1)*n + J-1]
#define RHO(I, J) rho[(I-1)*n + J-1]
#define SPEED(I, J) speed[(I-1)*n + J-1]
#define THETA(I, J) theta[(I-1)*n + J-1]
#define VANNA(I, J) vanna[(I-1)*n + J-1]
#define VEGA(I, J) vega[(I-1)*n + J-1]
#define VOMMA(I, J) vomma[(I-1)*n + J-1]
#define ZOMMA(I, J) zomma[(I-1)*n + J-1]
#endif

order = Nag_RowMajor;
#endif

if (!(charm = NAG_ALLOC(m*n, double)) ||
 !(colour = NAG_ALLOC(m*n, double)) ||
 !(crho = NAG_ALLOC(m*n, double)) ||
 !(delta = NAG_ALLOC(m*n, double)) ||
 !(gamma = NAG_ALLOC(m*n, double)) ||
 !(p = NAG_ALLOC(m*n, double)) ||
 !(rho = NAG_ALLOC(m*n, double)) ||
 !(sm = NAG_ALLOC(m, double)) ||
 !(speed = NAG_ALLOC(m*n, double)) ||
 !(t = NAG_ALLOC(n, double)) ||
 !(theta = NAG_ALLOC(m*n, double)) ||
 !(vanna = NAG_ALLOC(m*n, double)) ||
 !(vega = NAG_ALLOC(m*n, double)) ||
 !(vomma = NAG_ALLOC(m*n, double)) ||
 !(zomma = NAG_ALLOC(m*n, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read array of min/max prices, SM */
for (i = 0; i < m; i++)
#ifdef _WIN32
 scanf_s("%lf ", &sm[i]);
#else
 scanf("%lf ", &sm[i]);
#endif
#ifdef _WIN32
#endif
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/* Read array of times to expiry */
for (i = 0; i < n; i++)
#ifdef _WIN32
 scanf_s("%lf ", &t[i]);
#else
 scanf("%lf ", &t[i]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/*
 * nag_lookback_fls_greeks (s30bbc)
 * Floating-strike lookback option pricing formula with Greeks
 */

nag_lookback_fls_greeks(order, putnum, m, n, sm, s, t, sigma, r, q, p,
 delta, gamma, vega, theta, rho, crho, vanna, charm,
 speed, colour, zomma, vomma, &fail);

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_lookback_fls_greeks (s30bbc).
%s
", fail.message);
 exit_status = 1;
 goto END;
}

if (putnum == Nag_Call)
 printf("European Call :

");
else if (putnum == Nag_Put)
 printf("European Put :

");

printf("%s%8.4f
", " Spot = ", s);
printf("%s%8.4f
", " Volatility = ", sigma);
printf("%s%8.4f
", " Rate = ", r);
printf("%s%8.4f
", " Dividend = ", q);

for (j = 1; j <= n; j++)
{
 printf(" Time to Expiry : %8.4f
", t[j-1]);
 printf(" Strike Price Delta Gamma Vega
 Theta Rho CRho\n");
 for (i = 1; i <= m; i++)
 printf("%9.4f %9.4f %9.4f %9.4f %9.4f %9.4f %9.4f
", sm[i-1], P(i, j), DELTA(i, j), GAMMA(i, j), VEGA(i, j),
 THETA(i, j), RHO(i, j), CRHO(i, j));
 printf(" Colour Zomma Vomma\n");
 for (i = 1; i <= m; i++)
 printf("%29.4f %9.4f %9.4f %9.4f %9.4f %9.4f
", VANNA(i, j),
 CHARM(i, j), SPEED(i, j), COLOUR(i, j), ZOMMA(i, j),
 VOMMA(i, j));
}

END:
NAG_FREE(charm);
NAG_FREE(colour);
NAG_FREE(crho);
NAG_FREE(delta);
NAG_FREE(gamma);
NAG_FREE(p);
NAG_FREE(rho);
NAG_FREE(sm);
NAG_FREE(speed);
NAG_FREE(t);
NAG_FREE(theta);
NAG_FREE(vanna);
NAG_FREE(vega);
NAG_FREE(vomma);
NAG_FREE(zomma);

return exit_status;
}
10.2 Program Data

\texttt{nag_lookback_fls_greeks (s30bbc) Example Program Data}
\begin{verbatim}
 Nag_Put : Nag_Call or Nag_Put
 87.0 0.3 0.06 0.04 : s, sigma, r, q
 1 1 : m, n
 100.0 : SM(I), I = 1,2,...m
 0.5 : T(I), I = 1,2,...n
\end{verbatim}

10.3 Program Results

\texttt{nag_lookback_fls_greeks (s30bbc) Example Program Results}
\textbf{Floating-Strike Lookback}

European Put :

\begin{verbatim}
Spot = 87.0000
Volatility = 0.3000
Rate = 0.0600
Dividend = 0.0400
\end{verbatim}

\begin{verbatim}
Time to Expiry : 0.5000
Strike Price Delta Gamma Vega Theta Rho CRho
100.0000 18.3530 -0.3560 0.0391 45.5353 -11.6139 -32.8139 -23.6374
Vanna Charm Speed Colour Zomma Vomma
1.9141 -0.6199 0.0007 0.0221 -0.0648 76.1292
\end{verbatim}