1 Purpose

nag_kelvin_ker (s19acc) returns a value for the Kelvin function \(\ker x \).

2 Specification

```c
#include <nag.h>
#include <nags.h>
double nag_kelvin_ker (double x, NagError *fail)
```

3 Description

nag_kelvin_ker (s19acc) evaluates an approximation to the Kelvin function \(\ker x \).

Note: for \(x < 0 \) the function is undefined and at \(x = 0 \) it is infinite so we need only consider \(x > 0 \).

The function is based on several Chebyshev expansions:

For \(0 < x \leq 1 \),

\[
\ker x = -f(t)\log(x) + \frac{\pi}{16}x^2g(t) + y(t)
\]

where \(f(t) \), \(g(t) \) and \(y(t) \) are expansions in the variable \(t = 2x^4 - 1 \).

For \(1 < x \leq 3 \),

\[
\ker x = \exp\left(-\frac{11}{16}x\right)q(t)
\]

where \(q(t) \) is an expansion in the variable \(t = x - 2 \).

For \(x > 3 \),

\[
\ker x = \sqrt{\frac{\pi}{2x}}e^{-x/\sqrt{2}}\left[\left(1 + \frac{1}{x}c(t)\right)\cos\beta - \frac{1}{x}d(t)\sin\beta\right]
\]

where \(\beta = \frac{x}{\sqrt{2}} + \frac{\pi}{8} \) and \(c(t) \) and \(d(t) \) are expansions in the variable \(t = \frac{6}{x} - 1 \).

When \(x \) is sufficiently close to zero, the result is computed as

\[
\ker x = -\gamma - \log\left(\frac{x}{2}\right) + \left(\pi - \frac{3}{8}x^2\right)\frac{x^2}{16}
\]

and when \(x \) is even closer to zero, simply as \(\ker x = -\gamma - \log\left(\frac{x}{2}\right) \).

For large \(x \), \(\ker x \) is asymptotically given by \(\sqrt{\frac{\pi}{2x}}e^{-x/\sqrt{5}} \) and this becomes so small that it cannot be computed without underflow and the function fails.

4 References

5 Arguments

1: \(x \) – double

Input

\(On \ entry: \) the argument \(x \) of the function.

\(Constraint: \ x > 0.0. \)

2: \(\text{fail} \) – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_ARG_GT

On entry, \(x = \langle \text{value} \rangle. \) The function returns zero.

\(Constraint: \ x \leq \langle \text{value} \rangle. \)

\(x \) is too large, the result underflows and the function returns zero.

NE_REAL_ARG_LE

On entry, \(x = \langle \text{value} \rangle. \)

\(Constraint: \ x > 0.0. \)

The function is undefined and returns zero.

7 Accuracy

Let \(E \) be the absolute error in the result, \(\epsilon \) be the relative error in the result and \(\delta \) be the relative error in the argument. If \(\delta \) is somewhat larger than the \textit{machine precision}, then we have:

\[
E \simeq \left| \frac{x}{\sqrt{2}} \left(\text{ker} \, x + \text{kei} \, x \right) \right| \delta,
\]

\[
\epsilon \simeq \left| \frac{x}{\sqrt{2}} \frac{\text{ker} \, x + \text{kei} \, x}{\text{ker} \, x} \right| \delta.
\]

For very small \(x \), the relative error amplification factor is approximately given by \(\frac{1}{\| \log (x) \|} \), which implies a strong attenuation of relative error. However, \(\epsilon \) in general cannot be less than the \textit{machine precision}.

For small \(x \), errors are damped by the function and hence are limited by the \textit{machine precision}.
For medium and large x, the error behaviour, like the function itself, is oscillatory, and hence only the absolute accuracy for the function can be maintained. For this range of x, the amplitude of the absolute error decays like $\sqrt{\frac{\pi x}{2} e^{-x/\sqrt{2}}}$ which implies a strong attenuation of error. Eventually, $\text{ker} x$, which asymptotically behaves like $\sqrt{\frac{\pi}{2x} e^{-x/\sqrt{2}}}$, becomes so small that it cannot be calculated without causing underflow, and the function returns zero. Note that for large x the errors are dominated by those of the standard math library function \exp.

8 Parallelism and Performance

Not applicable.

9 Further Comments

Underflow may occur for a few values of x close to the zeros of $\text{ker} x$, below the limit which causes a failure with $\text{fail} \cdot \text{code} = \text{NE_REAL_ARG_GT}$.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```c
/* nag_kelvin_ker (s19acc) Example Program. */
"*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
    Integer exit_status = 0;
    double x, y;
    NagError fail;

    INIT_FAIL(fail);

    /* Skip heading in data file */
    #ifdef _WIN32
    scanf_s("%*[\n]");
    #else
    scanf("%*[\n]");
    #endif
    printf("nag_kelvin_ker (s19acc) Example Program Results\n");
    printf(" x y\n");
    #ifdef _WIN32
    while (scanf_s("%lf", &x) != EOF)
    #else
    while (scanf("%lf", &x) != EOF)
    #endif
    {
        /* nag_kelvin_ker (s19acc). 
        * Kelvin function ker x */
        y = nag_kelvin_ker(x, &fail);
        if (fail.code != NE_NOERROR)
```
{
 printf("Error from nag_kelvin_ker (s19acc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;

 printf("%12.3e%12.3e\n", x, y);
}

END:
return exit_status;
}

10.2 Program Data

nag_kelvin_ker (s19acc) Example Program Data

0.1
1.0
2.5
5.0
10.0
15.0

10.3 Program Results

nag_kelvin_ker (s19acc) Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000e-01</td>
<td>2.420e+00</td>
</tr>
<tr>
<td>1.000e+00</td>
<td>2.867e-01</td>
</tr>
<tr>
<td>2.500e+00</td>
<td>-6.969e-02</td>
</tr>
<tr>
<td>5.000e+00</td>
<td>-1.151e-02</td>
</tr>
<tr>
<td>1.000e+01</td>
<td>1.295e-04</td>
</tr>
<tr>
<td>1.500e+01</td>
<td>-1.514e-08</td>
</tr>
</tbody>
</table>