NAG Library Function Document
nag_bessel_k_alpha (s18egc)

1 Purpose
nag_bessel_k_alpha (s18egc) returns a sequence of values for the modified Bessel functions $K_{\alpha+n}(x)$ for real $x > 0$, selected values of $\alpha \geq 0$ and $n = 0, 1, \ldots, N$.

2 Specification
#include <nag.h>
#include <nags.h>
void nag_bessel_k_alpha (double x, Integer ia, Integer ja, Integer nl,
 double b[], NagError *fail)

3 Description
nag_bessel_k_alpha (s18egc) evaluates a sequence of values for the modified Bessel function of the second kind $K_{\alpha}(x)$, where x is real and non-negative and $\alpha \in \{0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{3}{2}\}$ is the order. The $(N+1)$-member sequence is generated for orders $\alpha, \alpha + 1, \ldots, \alpha + N$.

4 References

5 Arguments
1: \(x \) – double \(\text{Input} \)
 On entry: the argument x of the function.
 Constraint: $x > 0.0$.

2: \(i_a \) – Integer \(\text{Input} \)
3: \(j_a \) – Integer \(\text{Input} \)
 On entry: the numerator i and denominator j, respectively, of the order $\alpha = i/j$ of the first member in the required sequence of function values. Only the following combinations of pairs of values of i and j are allowed:
 - $i = 0$ and $j = 1$ corresponds to $\alpha = 0$;
 - $i = 1$ and $j = 2$ corresponds to $\alpha = \frac{1}{2}$;
 - $i = 1$ and $j = 3$ corresponds to $\alpha = \frac{1}{3}$;
 - $i = 1$ and $j = 4$ corresponds to $\alpha = \frac{1}{4}$;
 - $i = 2$ and $j = 3$ corresponds to $\alpha = \frac{2}{3}$;
 - $i = 3$ and $j = 4$ corresponds to $\alpha = \frac{3}{4}$.
 Constraint: i_a and j_a must constitute a valid pair $(i_a, j_a) = (0, 1), (1, 2), (1, 3), (1, 4), (2, 3)$ or $(3, 4)$.
4: \(\text{nl} \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} the value of \(N\). Note that the order of the last member in the required sequence of function values is given by \(\alpha + N\).

\text{Constraint:} \ 0 \leq \text{nl} \leq 100.

5: \(b[nl + 1]\) – double \hspace{1cm} \text{Output}

\text{On exit:} with fail.code = NE_NOERROR or fail.code = NW_SOME_PRECISION_LOSS, the required sequence of function values: \(b(n)\) contains \(K_{\alpha+n}(x)\) for \(n = 0, 1, \ldots, N\).

6: fail – NagError * \hspace{1cm} \text{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, \(\text{nl} = \langle\text{value}\rangle\).

\text{Constraint:} \ 0 \leq \text{nl} \leq 100.

NE_INT_2

On entry, \(\text{ia} = \langle\text{value}\rangle, \text{ja} = \langle\text{value}\rangle\).

\text{Constraint:} \ \text{ia} \text{ and } \text{ja} \text{ must constitute a valid pair } (\text{ia,ja}).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_OVERFLOW_LIKELY

The evaluation has been abandoned due to the likelihood of overflow.

NE_REAL

On entry, \(x = \langle\text{value}\rangle\).

\text{Constraint:} \ x > 0.0.

NE_TERMINATION_FAILURE

The evaluation has been abandoned due to failure to satisfy the termination condition.

NE_TOTAL_PRECISION_LOSS

The evaluation has been abandoned due to total loss of precision.

NW_SOME_PRECISION_LOSS

The evaluation has been completed but some precision has been lost.

7 Accuracy

All constants in the underlying function are specified to approximately 18 digits of precision. If \(t\) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18)\). Because of errors in argument reduction when computing elementary functions inside the underlying function, the actual number of correct digits is limited, in general, by \(p - s\), where \(s \approx \max(1, |\log_{10} x|)\) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x\), the less the precision in the result.
8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The example program evaluates $K_0(x), K_1(x), K_2(x)$ and $K_3(x)$ at $x = 0.5$, and prints the results.

10.1 Program Text
/* nag_bessel_k_alpha (s18egc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * NAG C Library
 * Mark 6, 2000.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
 Integer exit_status = 0, i, ia, ja, nl;
 NagError fail;
 double alpha, *b = 0, x;
 INIT_FAIL(fail);
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 printf("nag_bessel_k_alpha (s18egc) Example Program Results\n");
 if (!(b = NAG_ALLOC(101, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 #ifdef _WIN32
 while (scanf_s("%lf %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"%*[\n]", &x, &ia, &ja,
 &nl) != EOF)
 {
 printf(" x ia ja nl\n");
 printf("%4.1f %6"NAG_IFMT" %6"NAG_IFMT" %6"NAG_IFMT"\n", x, ia, ja,
 nl);
 /* nag_bessel_k_alpha (s18egc).
 * Modified Bessel functions K_(alpha+n)(x) for real
 * x > 0, selected values of alpha >= 0 and
 * n = 0,1,...,N
 */
 #else
 while (scanf("%lf %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"%*[\n]", &x, &ia, &ja,
 &nl) != EOF)
 {
 printf(" x ia ja nl\n");
 printf("%4.1f %6"NAG_IFMT" %6"NAG_IFMT" %6"NAG_IFMT"\n", x, ia, ja,
 nl);
 /* nag_bessel_k_alpha (s18egc).
 * Modified Bessel functions K_(alpha+n)(x) for real
 * x > 0, selected values of alpha >= 0 and
 * n = 0,1,...,N
 */
 #endif
71x764]8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The example program evaluates $K_0(x), K_1(x), K_2(x)$ and $K_3(x)$ at $x = 0.5$, and prints the results.

10.1 Program Text
/* nag_bessel_k_alpha (s18egc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * NAG C Library
 * Mark 6, 2000.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
 Integer exit_status = 0, i, ia, ja, nl;
 NagError fail;
 double alpha, *b = 0, x;
 INIT_FAIL(fail);
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 printf("nag_bessel_k_alpha (s18egc) Example Program Results\n");
 if (!(b = NAG_ALLOC(101, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 #ifdef _WIN32
 while (scanf_s("%lf %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"%*[\n]", &x, &ia, &ja,
 &nl) != EOF)
 {
 printf(" x ia ja nl\n");
 printf("%4.1f %6"NAG_IFMT" %6"NAG_IFMT" %6"NAG_IFMT"\n", x, ia, ja,
 nl);
 /* nag_bessel_k_alpha (s18egc).
 * Modified Bessel functions K_(alpha+n)(x) for real
 * x > 0, selected values of alpha >= 0 and
 * n = 0,1,...,N
 */
 #else
 while (scanf("%lf %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"%*[\n]", &x, &ia, &ja,
 &nl) != EOF)
 {
 printf(" x ia ja nl\n");
 printf("%4.1f %6"NAG_IFMT" %6"NAG_IFMT" %6"NAG_IFMT"\n", x, ia, ja,
 nl);
 /* nag_bessel_k_alpha (s18egc).
 * Modified Bessel functions K_(alpha+n)(x) for real
 * x > 0, selected values of alpha >= 0 and
 * n = 0,1,...,N
 */
 #endif

```c
/*
  nag_bessel_k_alpha(x, ia, ja, nl, b, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_bessel_k_alpha (s18egc).\n\n", fail.message);
      exit_status = 1;
      goto END;
    }
  printf(" Requested values of K_alpha(x)\n\n");
  alpha = (double) ia / (double) ja;
  printf(" alpha K_alpha(x)\n");
  for (i = 0; i <= nl; ++i)
    {
      printf(" %13.4e %13.4e\n", alpha, b[i]);
      alpha += 1.0;
    }
  }
END:
NAG_FREE(b);
return exit_status;
}

10.2 Program Data

nag_bessel_k_alpha (s18egc) Example Program Data
  0.5  0  1  3 : Values of x, ia, ja and nl

10.3 Program Results

nag_bessel_k_alpha (s18egc) Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>ia</th>
<th>ja</th>
<th>nl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Requested values of K_alpha(x)

<table>
<thead>
<tr>
<th>alpha</th>
<th>K_alpha(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000e+00</td>
<td>9.2442e-01</td>
</tr>
<tr>
<td>1.0000e+00</td>
<td>1.6564e+00</td>
</tr>
<tr>
<td>2.0000e+00</td>
<td>7.5502e+00</td>
</tr>
<tr>
<td>3.0000e+00</td>
<td>6.2058e+01</td>
</tr>
</tbody>
</table>
```