NAG Library Function Document

nag_bessel_i_nu_scaled (s18ecc)

1 Purpose

nag_bessel_i_nu_scaled (s18ecc) returns the value of the scaled modified Bessel function $e^{-x}I_{\nu/4}(x)$ for real $x > 0$.

2 Specification

```c
#include <nag.h>
#include <nags.h>

double nag_bessel_i_nu_scaled (double x, Integer nu, NagError *fail)
```

3 Description

nag_bessel_i_nu_scaled (s18ecc) evaluates an approximation to the scaled modified Bessel function of the first kind $e^{-x}I_{\nu/4}(x)$, where the order $\nu = -3, -2, -1, 1, 2$ or 3 and x is real and positive. For positive orders it may also be called with $x = 0$, since $I_{\nu/4}(0) = 0$ when $\nu > 0$. For negative orders the formula

$$I_{-\nu/4}(x) = I_{\nu/4}(x) + \frac{2}{\pi} \sin\left(\frac{\pi\nu}{4}\right) K_{\nu/4}(x)$$

is used prior to multiplication by the scale factor e^{-x}.

4 References

5 Arguments

1:
 x – double

 Input

 On entry: the argument x of the function.

 Constraints:

 if $\text{nu} < 0$, $x > 0.0$;

 if $\text{nu} > 0$, $x \geq 0.0$.

2:
 nu – Integer

 Input

 On entry: the argument ν of the function.

 Constraint: $1 \leq \text{abs(nu)} \leq 3$.

3:
 fail – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_INT
On entry, \(\nu = \langle \text{value} \rangle \).
Constraint: \(1 \leq |\nu| \leq 3 \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_OVERFLOW_LIKELY
The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NE_REAL_INT
On entry, \(x = \langle \text{value} \rangle, \nu = \langle \text{value} \rangle \).
Constraint: \(x > 0.0 \) when \(\nu < 0.0 \).
On entry, \(x = \langle \text{value} \rangle, \nu = \langle \text{value} \rangle \).
Constraint: \(x \geq 0.0 \) when \(\nu > 0.0 \).

NE_TERMINATION_FAILURE
The evaluation has been abandoned due to failure to satisfy the termination condition. The result is returned as zero.

NE_TOTAL_PRECISION_LOSS
The evaluation has been abandoned due to total loss of precision. The result is returned as zero.

NW_SOME_PRECISION_LOSS
The evaluation has been completed but some precision has been lost.

7 Accuracy
All constants in the underlying functions are specified to approximately 18 digits of precision. If \(t \) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside the underlying functions, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, |\log_{10} x|) \) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x \), the less the precision in the result.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
The example program reads values of the arguments \(x \) and \(\nu \) from a file, evaluates the function and prints the results.
10.1 Program Text

/* nag_bessel_i_nu_scaled (s18ecc) Example Program. */
* Copyright 2014 Numerical Algorithms Group.
* NAG C Library
* Mark 6, 2000.
* /

#include<stdio.h>
#include<nag.h>
#include<nag_stdlib.h>
#include<nags.h>

int main(void)
{
 Integer exit_status = 0, nu;
 NagError fail;
 double x, y;
 INIT_FAIL(fail);
 /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
 scanf("%*[^\n]");
#endif
 printf("nag_bessel_i_nu_scaled (s18ecc) Example Program Results\n");
 printf(" x nu y\n");
#ifdef _WIN32
 while (scanf_s("%lf %"NAG_IFMT"%[^\n]", &x, &nu) != EOF)
#else
 while (scanf("%lf %"NAG_IFMT"%[^\n]", &x, &nu) != EOF)
#endif
 {
 /* nag_bessel_i_nu_scaled (s18ecc).
 * Scaled modified Bessel function exp(-x) I_(nu/4)(x)
 */
 y = nag_bessel_i_nu_scaled(x, nu, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_bessel_i_nu_scaled (s18ecc).\n",
 fail.message);
 exit_status = 1;
 goto END;
 }
 printf("%4.1f %6"NAG_IFMT" %13.4e\n", x, nu, y);
 }
END:
 return exit_status;
}

10.2 Program Data

nag_bessel_i_nu_scaled (s18ecc) Example Program Data
3.9 -3
1.4 -2
8.2 -1
6.7 1
0.5 2
2.3 3 : Values of x and nu
10.3 Program Results

nag_bessel_i_nu_scaled (s18ecc) Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>nu</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>-3</td>
<td>1.9272e-01</td>
</tr>
<tr>
<td>1.4</td>
<td>-2</td>
<td>3.5767e-01</td>
</tr>
<tr>
<td>8.2</td>
<td>-1</td>
<td>1.4103e-01</td>
</tr>
<tr>
<td>6.7</td>
<td>-1</td>
<td>1.5649e-01</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>3.5664e-01</td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>2.3748e-01</td>
</tr>
</tbody>
</table>