NAG Library Function Document
nag_bessel_k1_scaled (s18cdc)

1 Purpose
nag_bessel_k1_scaled (s18cdc) returns a value of the scaled modified Bessel function \(e^x K_1(x) \).

2 Specification
#include <nag.h>
#include <nags.h>
double nag_bessel_k1_scaled (double x, NagError *fail)

3 Description
nag_bessel_k1_scaled (s18cdc) evaluates an approximation to \(e^x K_1(x) \), where \(K_1 \) is a modified Bessel function of the second kind. The scaling factor \(e^x \) removes most of the variation in \(K_1(x) \).
The function uses the same Chebyshev expansions as nag_bessel_k1 (s18adc), which returns the unscaled value of \(K_1(x) \).

4 References

5 Arguments
1: x – double
 Input
 On entry: the argument \(x \) of the function.
 Constraint: \(x > 0.0 \).
2: fail – NagError *
 Input/Output
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings
NE_ALLOC_FAIL
 Dynamic memory allocation failed.
 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_INTERNAL_ERROR
 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
 An unexpected error has been triggered by this function. Please contact NAG.
 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
 Your licence key may have expired or may not have been installed correctly.
 See Section 3.6.5 in the Essential Introduction for further information.
NE_REAL_ARG_LE

On entry, \(x = \langle\text{value}\rangle \).
Constraint: \(x > 0.0 \).

\(K_1 \) is undefined and the function returns zero.

NE_REAL_ARG_TOO_SMALL

On entry, \(x = \langle\text{value}\rangle \).
Constraint: \(x > \langle\text{value}\rangle \).
The function returns the value of the function at the smallest permitted value of the argument.

7 Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the accuracy of the argument is essentially limited by the \textit{machine precision}, the accuracy of the function value will be similarly limited by at most a small multiple of the \textit{machine precision}.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument \(x \) from a file, evaluates the function at each value of \(x \) and prints the results.

10.1 Program Text

/* nag_bessel_k1_scaled (s18cdc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 2 revised, 1992. *
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 double x, y;
 NagError fail;

 INIT_FAIL(fail);

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*
\n");
 #else
 scanf("%*
\n");
 #endif
 printf("nag_bessel_k1_scaled (s18cdc) Example Program Results\n");
 printf(" x \quad y \n");
 #ifdef _WIN32
 while (scanf_s("%lf", &x) != EOF)
 #else
 while (scanf("%lf", &x) != EOF)
 #endif
 printf(" \n");
 #else
...
while (scanf("%lf", &x) != EOF)
#endif
{
 /* nag_bessel_k1_scaled (s18cdc).
 * Scaled modified Bessel function exp(x) K_1(x)
 */
 y = nag_bessel_k1_scaled(x, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_bessel_k1_scaled (s18cdc).
 %s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 printf("%12.3e%12.3e\n", x, y);
}

END:
return exit_status;
}

10.2 Program Data

nag_bessel_k1_scaled (s18cdc) Example Program Data
 0.4
 0.6
 1.4
 2.5
 10.0
 1000.0

10.3 Program Results

nag_bessel_k1_scaled (s18cdc) Example Program Results
 x y
 4.000e-01 3.259e+00
 6.000e-01 2.374e+00
 1.400e+00 1.301e+00
 2.500e+00 9.002e-01
 1.000e+01 4.108e-01
 1.000e+03 3.965e-02