NAG Library Function Document

nag_bessel_y1_vector (s17arc)

1 Purpose
nag_bessel_y1_vector (s17arc) returns an array of values of the Bessel function $Y_1(x)$.

2 Specification

```c
#include <nag.h>
#include <nags.h>
void nag_bessel_y1_vector (Integer n, const double x[], double f[],
Integer ivalid[], NagError *fail)
```

3 Description

nag_bessel_y1_vector (s17arc) evaluates an approximation to the Bessel function of the second kind $Y_1(x)$ for an array of arguments x_i, for $i = 1, 2, \ldots, n$.

Note: $Y_1(x)$ is undefined for $x \leq 0$ and the function will fail for such arguments.

The function is based on four Chebyshev expansions:
For $0 < x \leq 8$,

$$Y_1(x) = \frac{2}{\pi} \ln x \sum_{r=0}^{\infty} a_r T_r(t) - \frac{2}{\pi x} \sum_{r=0}^{\infty} b_r T_r(t), \quad \text{with} \quad t = 2\left(\frac{x}{8}\right)^2 - 1.$$

For $x > 8$,

$$Y_1(x) = \sqrt{\frac{2}{\pi x}} \left\{ P_1(x) \sin \left(x - \frac{\pi}{4} \right) + Q_1(x) \cos \left(x - \frac{\pi}{4} \right) \right\}$$

where $P_1(x) = \sum c_r T_r(t)$,

and $Q_1(x) = \frac{8}{x} \sum d_r T_r(t)$, with $t = 2\left(\frac{8}{x}\right)^2 - 1$.

For x near zero, $Y_1(x) \approx -\frac{2}{\pi x}$. This approximation is used when x is sufficiently small for the result to be correct to machine precision. For extremely small x, there is a danger of overflow in calculating $-\frac{2}{\pi x}$ and for such arguments the function will fail.

For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the function fails. Such arguments contain insufficient information to determine the phase of oscillation of $Y_1(x)$; only the amplitude, $\sqrt{\frac{2}{\pi x}}$, can be determined and this is returned on failure. The range for which this occurs is roughly related to machine precision; the function will fail if $x \gtrsim 1$/machine precision (see the Users’ Note for your implementation for details).

4 References

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
5 Arguments

1: \(n \) – Integer \(\quad \text{Input} \)

 On entry: \(n \), the number of points.

 Constraint: \(n \geq 0 \).

2: \(x[n] \) – const double \(\quad \text{Input} \)

 On entry: the argument \(x_i \) of the function, for \(i = 1, 2, \ldots, n \).

 Constraint: \(x[i-1] > 0.0 \), for \(i = 1, 2, \ldots, n \).

3: \(f[n] \) – double \(\quad \text{Output} \)

 On exit: \(Y_1(x_i) \), the function values.

4: \(\text{ivalid}[n] \) – Integer \(\quad \text{Output} \)

 On exit: \(\text{ivalid}[i-1] \) contains the error code for \(x_i \), for \(i = 1, 2, \ldots, n \).

 \(\text{ivalid}[i-1] = 0 \)

 No error.

 \(\text{ivalid}[i-1] = 1 \)

 On entry, \(x_i \) is too large. \(\text{f}[i-1] \) contains the amplitude of the \(Y_1 \) oscillation, \(\sqrt{\frac{2}{\pi x_i}} \).

 \(\text{ivalid}[i-1] = 2 \)

 On entry, \(x_i \leq 0.0 \), \(Y_1 \) is undefined. \(\text{f}[i-1] \) contains 0.0.

 \(\text{ivalid}[i-1] = 3 \)

 \(x_i \) is too close to zero, there is a danger of overflow. On failure, \(\text{f}[i-1] \) contains the value of \(Y_1(x) \) at the smallest valid argument.

5: \(\text{fail} \) – NagError \(* \) \(\quad \text{Input/Output} \)

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT

On entry, \(n = \langle \text{value} \rangle \).

Constraint: \(n \geq 0 \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.
7 Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since $Y_1(x)$ oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If δ is somewhat larger than the **machine precision** (e.g., if δ is due to data errors etc.), then E and δ are approximately related by:

$$E \simeq |xY_0(x) - Y_1(x)|\delta$$

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor $|xY_0(x) - Y_1(x)|$.

However, if δ is of the same order as **machine precision**, then rounding errors could make E slightly larger than the above relation predicts.

For very small x, absolute error becomes large, but the relative error in the result is of the same order as δ.

For very large x, the above relation ceases to apply. In this region, $Y_1(x) \simeq \sqrt{\frac{2}{\pi x}} \sin \left(x - \frac{3\pi}{4} \right)$. The amplitude $\sqrt{\frac{2}{\pi x}}$ can be calculated with reasonable accuracy for all x, but $\sin \left(x - \frac{3\pi}{4} \right)$ cannot. If $x - \frac{3\pi}{4}$ is written as $2N\pi + \theta$ where N is an integer and $0 \leq \theta < 2\pi$, then $\sin \left(x - \frac{3\pi}{4} \right)$ is determined by θ only.

If $x > \delta^{-1}$, θ cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of, the inverse of the **machine precision**, it is impossible to calculate the phase of $Y_1(x)$ and the function must fail.

![Figure 1](image-url)
8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of x from a file, evaluates the function at each value of x_i and prints the results.

10.1 Program Text

/* nag_bessel_y1_vector (s17arc) Example Program. */
/* * Copyright 2014 Numerical Algorithms Group. */
/* * Mark 23, 2011. */
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 Integer i, n;
 double *f = 0, *x = 0;
 Integer *ivalid = 0;
 NagError fail;

 INIT_FAIL(fail);

 /* Allocate memory */
 if (!(x = NAG_ALLOC(n, double)) ||
 !(f = NAG_ALLOC(n, double)) ||
 !(ivalid = NAG_ALLOC(n, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Initialize the data file */
 if (!_WIN32)
 scanf("%*[\n]"n);
 else
 scanf("%*[\n]"n);

 /* Print the results */
 printf("nag_bessel_y1_vector (s17arc) Example Program Results\n");
 printf("\n");
 printf(" x f ivalid\n");
 printf("\n");
 if (!_WIN32)
 scanf("%"NAG_IFMT", &n);
 else
 scanf("%"NAG_IFMT", &n);

 printf("\n");
 for (i = 0; i < n; i++)
 {
 printf("%f %f %d\n", x[i], f[i], ivalid[i]);
 }

 goto END;

END:
 exit_status = -1;
 goto END;
for (i=0; i<n; i++)
#ifdef _WIN32
 scanf_s("%lf", &x[i]);
#else
 scanf("%lf", &x[i]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
/* nag_bessel_y1_vector (s17arc).
 * Bessel function Y_1(x)
 */
nag_bessel_y1_vector(n, x, f, ivalid, &fail);
if (fail.code!=NE_NOERROR && fail.code!=NW_INVALID)
{
 printf("Error from nag_bessel_y1_vector (s17arc).
 %s
", fail.message);
 exit_status = 1;
 goto END;
}
for (i=0; i<n; i++)
 printf(" %11.3e %11.3e %4\nAG_IFMT\n", x[i], f[i], ivalid[i]);
END:
NAG_FREE(f);
NAG_FREE(x);
NAG_FREE(ivalid);
return exit_status;

10.2 Program Data

nag_bessel_y1_vector (s17arc) Example Program Data

7
0.5 1.0 3.0 6.0 8.0 10.0 1000.0

10.3 Program Results

nag_bessel_y1_vector (s17arc) Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
<th>ivalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000e-01</td>
<td>-1.471e+00</td>
<td>0</td>
</tr>
<tr>
<td>1.000e+00</td>
<td>-7.812e-01</td>
<td>0</td>
</tr>
<tr>
<td>3.000e+00</td>
<td>3.247e-01</td>
<td>0</td>
</tr>
<tr>
<td>6.000e+00</td>
<td>-1.750e-01</td>
<td>0</td>
</tr>
<tr>
<td>8.000e+00</td>
<td>-1.581e-01</td>
<td>0</td>
</tr>
<tr>
<td>1.000e+01</td>
<td>2.490e-01</td>
<td>0</td>
</tr>
<tr>
<td>1.000e+03</td>
<td>-2.478e-02</td>
<td>0</td>
</tr>
</tbody>
</table>