NAG Library Function Document

nag_bessel_j0 (s17aec)

1 Purpose

nag_bessel_j0 (s17aec) returns the value of the Bessel function \(J_0(x) \).

2 Specification

```c
#include <nag.h>
#include <nags.h>
double nag_bessel_j0 (double x, NagError *fail)
```

3 Description

nag_bessel_j0 (s17aec) evaluates an approximation to the Bessel function of the first kind \(J_0(x) \).

Note: \(J_0(-x) = J_0(x) \), so the approximation need only consider \(x \geq 0 \).

The function is based on three Chebyshev expansions:

For \(0 < x \leq 8 \),

\[
J_0(x) = \sum_{r=0} a_r T_r(t), \quad \text{with } t = 2 \left(\frac{x}{8} \right)^2 - 1.
\]

For \(x > 8 \),

\[
J_0(x) = \sqrt{\frac{2}{\pi x}} \left\{ P_0(x) \cos \left(x - \frac{\pi}{4} \right) - Q_0(x) \sin \left(x - \frac{\pi}{4} \right) \right\},
\]

where \(P_0(x) = \sum_{r=0} b_r T_r(t) \),

and \(Q_0(x) = \frac{8}{x} \sum_{r=0} c_r T_r(t) \),

with \(t = 2 \left(\frac{x}{8} \right)^2 - 1 \).

For \(x \) near zero, \(J_0(x) \approx 1 \). This approximation is used when \(x \) is sufficiently small for the result to be correct to machine precision.

For very large \(x \), it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the function fails. Such arguments contain insufficient information to determine the phase of oscillation of \(J_0(x) \); only the amplitude, \(\sqrt{\frac{2}{\pi x}} \), can be determined and this is returned on failure. The range for which this occurs is roughly related to machine precision; the function will fail if \(|x| \gtrsim 1/machine\ precision \) (see the Users’ Note for your implementation for details).

4 References

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO
5 Arguments

1: \textbf{x} – double \hspace{1cm} \textit{Input}

 \textit{On entry:} the argument \textit{x} of the function.

2: \textbf{fail} – NagError * \hspace{1cm} \textit{Input/Output}

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in the Essential Introduction for further information.

\textbf{NE_REAL_ARG_GT}

On entry, \textbf{x} = \langle\textit{value}\rangle.

Constraint: \(|\textbf{x}| \leq \langle\textit{value}\rangle \).

\textit{|x| is too large, the function returns the amplitude of the \(J_0 \) oscillation, \(\sqrt{2/(\pi|x|)} \).}

7 Accuracy

Let \(\delta \) be the relative error in the argument and \(E \) be the absolute error in the result. (Since \(J_0(x) \) oscillates about zero, absolute error and not relative error is significant.)

If \(\delta \) is somewhat larger than the \textit{machine precision} (e.g., if \(\delta \) is due to data errors etc.), then \(E \) and \(\delta \) are approximately related by:

\[E \simeq |xJ_1(x)|\delta \]

(provided \(E \) is also within machine bounds). Figure 1 displays the behaviour of the amplification factor \(|xJ_1(x)| \).

However, if \(\delta \) is of the same order as \textit{machine precision}, then rounding errors could make \(E \) slightly larger than the above relation predicts.

For very large \(x \), the above relation ceases to apply. In this region, \(J_0(x) \simeq \sqrt{\frac{2}{\pi|x|}} \cos\left(x - \frac{\pi}{4}\right) \). The amplitude \(\sqrt{\frac{2}{\pi|x|}} \) can be calculated with reasonable accuracy for all \(x \), but \(\cos\left(x - \frac{\pi}{4}\right) \) cannot. If \(x - \frac{\pi}{4} \) is written as \(2N\pi + \theta \) where \(N \) is an integer and \(0 \leq \theta < 2\pi \), then \(\cos\left(x - \frac{\pi}{4}\right) \) is determined by \(\theta \) only.

If \(x \gtrsim \delta^{-1} \), \(\theta \) cannot be determined with any accuracy at all. Thus if \(x \) is greater than, or of the order of, the inverse of the \textit{machine precision}, it is impossible to calculate the phase of \(J_0(x) \) and the function must fail.
8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

/* nag_bessel_j0 (s17aec) Example Program. */
* * Copyright 2014 Numerical Algorithms Group.
* * Mark 2 revised, 1992.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 double x, y;
 NagError fail;

 INIT_FAIL(fail);

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n");
 #else
 scanf("%*[\n");
 #endif

```c
#else
  scanf("%*[\n"]);
#endif

printf("nag_bessel_j0 (s17aec) Example Program Results\n");
printf(" x  y\n");
#ifdef _WIN32
  while (scanf_s("%lf", &x) != EOF)
#else
  while (scanf("%lf", &x) != EOF)
#endif
{
    /* nag_bessel_j0 (s17aec).
     * Bessel function J_0(x)
     */
    y = nag_bessel_j0(x, &fail);
    if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_bessel_j0 (s17aec).\n%s\n", fail.message);
      exit_status = 1;
      goto END;
    }
    printf("%12.3e%12.3e\n", x, y);
}

END:
return exit_status;
}

10.2 Program Data

nag_bessel_j0 (s17aec) Example Program Data
  0.0
  0.5
  1.0
  3.0
  6.0
  8.0
  10.0
  -1.0
  1000.0

10.3 Program Results

nag_bessel_j0 (s17aec) Example Program Results
  x         y
  0.000e+00 1.000e+00
  5.000e-01 9.385e-01
  1.000e+00 7.652e-01
  3.000e+00 -2.601e-01
  6.000e+00 1.506e-01
  8.000e+00 1.717e-01
  1.000e+01 -2.459e-01
 -1.000e+00 7.652e-01
  1.000e+03 2.479e-02
```
Example Program
Returned Values for the Bessel Function $J_0(x)$