NAG Library Function Document

nag_erf (s15aec)

1 Purpose

nag_erf (s15aec) returns the value of the error function \(\text{erf}(x) \).

2 Specification

```c
#include <nag.h>
#include <nags.h>
double nag_erf (double x)
```

3 Description

nag_erf (s15aec) calculates an approximate value for the error function

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt = 1 - \text{erfc}(x).
\]

Let \(\hat{x} \) be the root of the equation \(\text{erfc}(x) - \text{erf}(x) = 0 \) (then \(\hat{x} \approx 0.46875 \)). For \(|x| \leq \hat{x} \) the value of \(\text{erf}(x) \) is based on the following rational Chebyshev expansion for \(\text{erf}(x) \):

\[
\text{erf}(x) \approx x R_{\ell,m}(x^2),
\]

where \(R_{\ell,m} \) denotes a rational function of degree \(\ell \) in the numerator and \(m \) in the denominator.

For \(|x| > \hat{x} \) the value of \(\text{erf}(x) \) is based on a rational Chebyshev expansion for \(\text{erfc}(x) \): for \(\hat{x} < |x| \leq 4 \) the value is based on the expansion

\[
\text{erfc}(x) \approx e^{x^2} R_{\ell,m}(x);
\]

and for \(|x| > 4 \) it is based on the expansion

\[
\text{erfc}(x) \approx \frac{e^{x^2}}{x} \left(\frac{1}{\sqrt{\pi}} + \frac{1}{x^2} R_{\ell,m}(1/x^2) \right).
\]

For each expansion, the specific values of \(\ell \) and \(m \) are selected to be minimal such that the maximum relative error in the expansion is of the order \(10^{-d} \), where \(d \) is the maximum number of decimal digits that can be accurately represented for the particular implementation (see nag_decimal_digits (X02BEC)).

For \(|x| \geq x_{\text{hi}} \) there is a danger of setting underflow in \(\text{erfc}(x) \) (the value of \(x_{\text{hi}} \) is given in the Users’ Note for your implementation). For \(x \geq x_{\text{hi}} \), nag_erf (s15aec) returns \(\text{erf}(x) = 1 \); for \(x \leq -x_{\text{hi}} \) it returns \(\text{erf}(x) = -1 \).

4 References

5 Arguments

1: \(x \) – double

\(\text{Input} \)

\(\text{On entry:} \) the argument \(x \) of the function.
6 Error Indicators and Warnings

None.

7 Accuracy

See Section 7 in nag_erfc (s15adc).

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```c
/* nag_erf (s15aec) Example Program.
   * Copyright 2014 Numerical Algorithms Group.
   * Mark 1, 1990.
   */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
    Integer exit_status = 0;
    double x, y;

    /* Skip heading in data file */
#ifndef _WIN32
    scanf_s("%*[\n]");
#else
    scanf("%*[\n]");
#endif
    printf("nag_erf (s15aec) Example Program Results\n");
    printf(" %12.3e%12.3e\n", x, y);
#endif
    return exit_status;
}
```

10.2 Program Data

nag_erf (s15aec) Example Program Data
-6.0
-4.5
-1.0
1.0
4.5
6.0

10.3 Program Results

nag_erf (s15aec) Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.000e+00</td>
<td>-1.000e+00</td>
</tr>
<tr>
<td>-4.500e+00</td>
<td>-1.000e-00</td>
</tr>
<tr>
<td>-1.000e+00</td>
<td>-8.427e-01</td>
</tr>
<tr>
<td>1.000e+00</td>
<td>8.427e-01</td>
</tr>
<tr>
<td>4.500e+00</td>
<td>1.000e-00</td>
</tr>
<tr>
<td>6.000e+00</td>
<td>1.000e+00</td>
</tr>
</tbody>
</table>