NAG Library Function Document

nag_cumul_normal (s15abc)

1 Purpose

nag_cumul_normal (s15abc) returns the value of the cumulative Normal distribution function, \(P(x) \).

2 Specification

```c
#include <nag.h>
#include <nags.h>
double nag_cumul_normal (double x)
```

3 Description

nag_cumul_normal (s15abc) evaluates an approximate value for the cumulative Normal distribution function

\[
P(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du.
\]

The function is based on the fact that

\[
P(x) = \frac{1}{2} \text{erfc} \left(\frac{x}{\sqrt{2}} \right)
\]

and it calls nag_erfc (s15adc) to obtain a value of \(\text{erfc} \) for the appropriate argument.

4 References

5 Arguments

1: \(x \) – double

On entry: the argument \(x \) of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

Because of its close relationship with \(\text{erfc} \), the accuracy of this function is very similar to that in nag_erfc (s15adc). If \(\epsilon \) and \(\delta \) are the relative errors in result and argument, respectively, they are in principle related by

\[
|\epsilon| \simeq \left| \frac{x e^{-\frac{1}{2}x^2}}{\sqrt{2\pi} P(x)} \delta \right|
\]

so that the relative error in the argument, \(x \), is amplified by a factor \(\frac{x e^{-\frac{1}{2}x^2}}{\sqrt{2\pi} P(x)} \), in the result.
For x small and for x positive this factor is always less than one and accuracy is mainly limited by machine precision.

For large negative x the factor behaves like $\sim x^2$ and hence to a certain extent relative accuracy is unavoidably lost.

However the absolute error in the result, E, is given by

\[|E| \approx \left| \frac{x e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}e} \right| \]

so absolute accuracy can be guaranteed for all x.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

/* nag_cumul_normal (s15abc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 1, 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
 Integer exit_status = 0;
 double x, y;

 /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
 printf("nag_cumul_normal (s15abc) Example Program Results\n");
 printf(" x y\n");
#ifdef _WIN32
 while (scanf_s("%lf", &x) != EOF)
#else
 while (scanf("%lf", &x) != EOF)
#endif
{
 /* nag_cumul_normal (s15abc).
 * Cumulative Normal distribution function $P(x)$
 */
 y = nag_cumul_normal(x);
printf("%2.3e%2.3e\n", x, y);
}
return exit_status;
}

10.2 Program Data

nag_cumul_normal (s15abc) Example Program Data
 -20.0
 -1.0
 0.0
 1.0
 2.0
 20.0

10.3 Program Results

nag_cumul_normal (s15abc) Example Program Results
 x y
-2.000e+01 2.754e-89
-1.000e+00 1.587e-01
 0.000e+00 5.000e-01
 1.000e+00 8.413e-01
 2.000e+00 9.772e-01
 2.000e+01 1.000e+00