NAG Library Function Document

nag_incomplete_beta (s14ccc)

1 Purpose

nag_incomplete_beta (s14ccc) computes values for the incomplete beta function \(I_x(a, b) \) and its complement \(1 - I_x(a, b) \).

2 Specification

```c
#include <nag.h>
#include <nags.h>

void nag_incomplete_beta (double a, double b, double x, double *w, double *w1, NagError *fail)
```

3 Description

nag_incomplete_beta (s14ccc) evaluates the incomplete beta function and its complement in the normalized form

\[
I_x(a, b) = \frac{1}{B(a, b)} \int_0^x t^{a-1} (1-t)^{b-1} dt
\]

\[
1 - I_x(a, b) = I_y(b, a), \text{ where } y = 1 - x,
\]

with

- \(0 \leq x \leq 1 \),
- \(a \geq 0 \) and \(b \geq 0 \),

and the beta function \(B(a, b) \) is defined as

\[
B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}
\]

where \(\Gamma(y) \) is the gamma function.

Several methods are used to evaluate the functions depending on the parameters \(a, b \) and \(x \). The methods include Wise’s asymptotic expansion (see Wise (1950)) when \(a > b \), continued fraction derived by DiDonato and Morris (1992) when \(a, b > 1 \), and power series when \(b \leq 1 \) or \(b \times x \leq 0.7 \). When both \(a \) and \(b \) are large, specifically \(a, b \geq 15 \), the DiDonato and Morris (1992) asymptotic expansion is employed for greater efficiency.

Once either \(I_x(a, b) \) or \(I_y(b, a) \) is computed, the other is obtained by subtraction from 1. In order to avoid loss of relative precision in this subtraction, the smaller of \(I_x(a, b) \) and \(I_y(b, a) \) is computed first.

nag_incomplete_beta (s14ccc) is derived from BRATIO in DiDonato and Morris (1992).

4 References

Wise M E (1950) The incomplete beta function as a contour integral and a quickly converging series for its inverse Biometrika 37 208–218
5 Arguments

1: \(a\) – double

 Input

 On entry: the parameter \(a\) of the function.

 Constraint: \(a \geq 0.0\).

2: \(b\) – double

 Input

 On entry: the parameter \(b\) of the function.

 Constraints:
 \[
 b \geq 0.0;
 \text{either } b \neq 0.0 \text{ or } a \neq 0.0.
 \]

3: \(x\) – double

 Input

 On entry: \(x\), upper limit of integration.

 Constraints:
 \[
 0.0 \leq x \leq 1.0;
 \text{either } x \neq 0.0 \text{ or } a \neq 0.0;
 \text{either } 1 - x \neq 0.0 \text{ or } b \neq 0.0.
 \]

4: \(w\) – double *

 Output

 On exit: the value of the incomplete beta function \(I_x(a, b)\) evaluated from zero to \(x\).

5: \(w1\) – double *

 Output

 On exit: the value of the complement of the incomplete beta function \(1 - I_x(a, b)\), i.e., the incomplete beta function evaluated from \(x\) to one.

6: \(\text{fail}\) – NagError *

 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

 Dynamic memory allocation failed.

 See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

 On entry, argument \(<\text{value}>\) had an illegal value.

NE_INTERNAL_ERROR

 An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

 An unexpected error has been triggered by this function. Please contact NAG.

 See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

 Your licence key may have expired or may not have been installed correctly.

 See Section 3.6.5 in the Essential Introduction for further information.
NE_REAL
On entry, $a = \langle\text{value}\rangle$.
Constraint: $a \geq 0.0$.

On entry, $b = \langle\text{value}\rangle$.
Constraint: $b \geq 0.0$.

On entry, $x = \langle\text{value}\rangle$.
Constraint: $0.0 \leq x \leq 1.0$.

NE_REAL_2
On entry, $1.0 - x$ and b were zero.
Constraint: $1.0 - x$ or b must be nonzero.

On entry, a and b were zero.
Constraint: a or b must be nonzero.

On entry, x and a were zero.
Constraint: x or a must be nonzero.

7 Accuracy

nag_incomplete_beta (s14ccc) is designed to maintain relative accuracy for all arguments. For very tiny results (of the order of machine precision or less) some relative accuracy may be lost – loss of three or four decimal places has been observed in experiments. For other arguments full relative accuracy may be expected.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the arguments a and b from a file, evaluates the function and its complement for 10 different values of x and prints the results.

10.1 Program Text

/* nag_incomplete_beta (s14ccc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 double a, b, x, w, wl;
 NagError fail;
 INIT_FAIL(fail);
 printf("nag_incomplete_beta (s14ccc) Example Program Results\n");

Mark 25

s14ccc.3
/* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

printf("%4s%7s%7s%13s%13s\n", "a", "b", "x", "Ix(a,b)", "1-Ix(a,b)");
#ifdef _WIN32
 while (scanf_s("%lf %lf %lf", &a, &b, &x) != EOF)
#else
 while (scanf("%lf %lf %lf", &a, &b, &x) != EOF)
#endif
{
 /* nag_incomplete_beta (s14ccc).
 * Incomplete beta function Ix(a,b) and its complement 1-Ix(a,b)
 */
 nag_incomplete_beta(a, b, x, &w, &w1, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_incomplete_beta (s14ccc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
 printf("%6.2f%7.2f%7.2f%12.4e%12.4e\n", a, b, x, w, w1);
}

END:
 return exit_status;
}

10.2 Program Data

nag_incomplete_beta (s14ccc) Example Program Data

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>x</th>
<th>Ix(a,b)</th>
<th>1-Ix(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.01</td>
<td>6.4755e-08</td>
<td>1.0000e+00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.20</td>
<td>0.02</td>
<td>4.0324e-03</td>
<td>9.9997e-01</td>
</tr>
<tr>
<td>0.20</td>
<td>1.00</td>
<td>0.04</td>
<td>5.2531e-01</td>
<td>4.7469e-01</td>
</tr>
<tr>
<td>1.20</td>
<td>5.10</td>
<td>0.05</td>
<td>1.6101e-01</td>
<td>8.3999e-01</td>
</tr>
<tr>
<td>7.00</td>
<td>2.50</td>
<td>0.08</td>
<td>3.3490e-07</td>
<td>1.0000e+00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.09</td>
<td>9.0000e-02</td>
<td>9.1000e-01</td>
</tr>
<tr>
<td>10.00</td>
<td>1.50</td>
<td>0.10</td>
<td>3.5279e-10</td>
<td>1.0000e+00</td>
</tr>
</tbody>
</table>

10.3 Program Results

nag_incomplete_beta (s14ccc) Example Program Results

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>x</th>
<th>Ix(a,b)</th>
<th>1-Ix(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30</td>
<td>10.10</td>
<td>0.01</td>
<td>6.4755e-08</td>
<td>1.0000e+00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.20</td>
<td>0.02</td>
<td>4.0324e-03</td>
<td>9.9997e-01</td>
</tr>
<tr>
<td>0.20</td>
<td>1.00</td>
<td>0.04</td>
<td>5.2531e-01</td>
<td>4.7469e-01</td>
</tr>
<tr>
<td>1.20</td>
<td>5.10</td>
<td>0.05</td>
<td>1.6101e-01</td>
<td>8.3999e-01</td>
</tr>
<tr>
<td>7.00</td>
<td>2.50</td>
<td>0.08</td>
<td>3.3490e-07</td>
<td>1.0000e+00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>0.09</td>
<td>9.0000e-02</td>
<td>9.1000e-01</td>
</tr>
<tr>
<td>10.00</td>
<td>1.50</td>
<td>0.10</td>
<td>3.5279e-10</td>
<td>1.0000e+00</td>
</tr>
</tbody>
</table>