1 Purpose

nag_polygamma_fun (s14acc) returns a value of the function \(\psi(x) - \ln x \), where \(\psi \) is the psi function \(\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)} \).

2 Specification

```c
#include <nag.h>
#include <nags.h>
double nag_polygamma_fun (double x, NagError *fail)
```

3 Description

nag_polygamma_fun (s14acc) returns a value of the function \(\psi(x) - \ln x \). The psi function is computed without the logarithmic term so that when \(x \) is large, sums or differences of psi functions may be computed without unnecessary loss of precision, by analytically combining the logarithmic terms. For example, the difference \(d = \psi(x + \frac{1}{2}) - \psi(x) \) has an asymptotic behaviour for large \(x \) given by \(d \sim \ln(x + \frac{1}{2}) - \ln x + O\left(\frac{1}{x^2}\right) \sim \ln\left(1 + \frac{1}{2x}\right) \sim \frac{1}{2x} \).

Computing \(d \) directly would amount to subtracting two large numbers which are close to \(\ln(x + \frac{1}{2}) \) and \(\ln x \) to produce a small number close to \(\frac{1}{2x} \), resulting in a loss of significant digits. However, using this function to compute \(f(x) = \psi(x) - \ln x \), we can compute \(d = f(x + \frac{1}{2}) - f(x) + \ln\left(1 + \frac{1}{2x}\right) \), and the dominant logarithmic term may be computed accurately from its power series when \(x \) is large. Thus we avoid the unnecessary loss of precision.

The function is derived from the function PSIFN in Amos (1983).

4 References

5 Arguments

1: \(x \) – double

\(x \) is the argument of the function.

\(x > 0.0 \).

2: \(fail \) – NagError

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_OVERFLOW_LIKELY
Computation halted due to likelihood of overflow. x may be too small. $x = \langle value \rangle$.

NE_REAL
On entry, $x = \langle value \rangle$.
Constraint: $x > 0.0$.

NE_UNDERFLOW_LIKELY
Computation halted due to likelihood of underflow. x may be too large. $x = \langle value \rangle$.

7 Accuracy

All constants in nag_polygamma_fun (s14acc) are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by $p = \min(t, 18)$.

With the above proviso, results returned by this function should be accurate almost to full precision, except at points close to the zero of $\psi(x)$, $x \approx 1.461632$, where only absolute rather than relative accuracy can be obtained.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.
10.1 Program Text

/* nag_polygamma_fun (s14acc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 7, 2002.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 Integer exit_status = 0;
 double f, x;
 NagError fail;

 INIT_FAIL(fail);

 /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif

 printf("nag_polygamma_fun (s14acc) Example Program Results

gen(x) - log(x)
");
#ifdef _WIN32
 while (scanf_s("%lf", &x) != EOF)
#else
 while (scanf("%lf", &x) != EOF)
#endif
 {
 /* nag_polygamma_fun (s14acc).
gen(x) - ln(x)
 */
 f = nag_polygamma_fun(x, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_polygamma_fun (s14acc).\nfail.message\n",
 fail.message);
 exit_status = 1;
 goto END;
 }
 printf("%8.3f %14.4f
", x, f);
 }

END:
 return exit_status;
}

10.2 Program Data

nag_polygamma_fun (s14acc) Example Program Data
0.1
0.5
3.6
8.0

10.3 Program Results

nag_polygamma_fun (s14acc) Example Program Results

gen(x) - log(x)

0.100 -8.1212
0.500 -1.2704
3.600 -0.1453
8.000 -0.0638
Example Program
Returns a Value of the Function $\psi(x) - \ln x$