NAG Library Function Document

nag_tsa_cp_binary (g13ndc)

1 Purpose

nag_tsa_cp_binary (g13ndc) detects change points in a univariate time series, that is, the time points at
which some feature of the data, for example the mean, changes. Change points are detected using binary
segmentation using one of a provided set of cost functions.

2 Specification

```c
#include <nag.h>
#include <nagg13.h>

void nag_tsa_cp_binary (Nag_TS_ChangeType ctype, Integer n, const double y[],
                    double beta, Integer minss, const double param[], Integer mdepth,
                    Integer *ntau, Integer tau[], double sparam[], NagError *fail)
```

3 Description

Let \(y_1:n = \{ y_j : j = 1, 2, \ldots, n \} \) denote a series of data and \(\tau = \{ \tau_i : i = 1, 2, \ldots, m \} \) denote a set of \(m \)
ordered (strictly monotonic increasing) indices known as change points, with \(1 \leq \tau_i \leq n \) and \(\tau_m = n \).
For ease of notation we also define \(\tau_0 = 0 \). The \(m \) change points, \(\tau \), split the data into \(m \) segments, with
the \(i \)th segment being of length \(n_i \) and containing \(y_{\tau_{i-1}+1}^{\tau_i} \).

Given a cost function, \(C(y_{\tau_{i-1}+1}^{\tau_i}) \), nag_tsa_cp_binary (g13ndc) gives an approximate solution to

\[
\min_{m,\tau} \sum_{i=1}^{m} (C(y_{\tau_{i-1}+1}^{\tau_i}) + \beta)
\]

where \(\beta \) is a penalty term used to control the number of change points. The solution is obtained in an
iterative manner as follows:

1. Set \(u = 1, \ w = n \) and \(k = 0 \)
2. Set \(k = k + 1 \). If \(k > K \), where \(K \) is a user-supplied control parameter, then terminate the process
 for this segment.
3. Find \(v \) that minimizes
 \[C(y_{u:v}) + C(y_{v+1:w}) \]
4. Test
 \[C(y_{u:v}) + C(y_{v+1:w}) + \beta < C(y_{u:w}) \] (1)
5. If inequality (1) is false then the process is terminated for this segment.
6. If inequality (1) is true, then \(v \) is added to the set of change points, and the segment is split into two
 subsegments, \(y_{u:v} \) and \(y_{v+1:w} \). The whole process is repeated from step 2 independently on each
 subsegment, with the relevant changes to the definition of \(u \) and \(w \) (i.e., \(w \) is set to \(v \) when
 processing the left hand subsegment and \(u \) is set to \(v + 1 \) when processing the right hand
 subsegment.

The change points are ordered to give \(\tau \).

nag_tsa_cp_binary (g13ndc) supplies four families of cost function. Each cost function assumes that the
series, \(y \), comes from some distribution, \(D(\theta) \). The parameter space, \(\Theta = \{ \theta, \phi \} \) is subdivided into \(\theta \)
containing those parameters allowed to differ in each segment and \(\phi \) those parameters treated as constant
across all segments. All four cost functions can then be described in terms of the likelihood function, \(L \)
and are given by:

Mark 25
\[C(y_{(\tau_i+1),\tau_i}) = -2\log L(\hat{\theta}_i, \phi|y_{(\tau_i+1),\tau_i}) \]

where the \(\hat{\theta}_i \) is the maximum likelihood estimate of \(\theta \) within the \(i \)th segment. Four distributions are available; Normal, Gamma, Exponential and Poisson distributions. Letting

\[S_i = \sum_{j=\tau_i}^{\tau_i} y_j \]

the log likelihoods and cost functions for the four distributions, and the available subdivisions of the parameter space are:

Normal distribution: \(\Theta = \{\mu, \sigma^2\} \)

\[-2\log L = \sum_{i=1}^{m} \sum_{j=\tau_i}^{\tau_i} \log(2\pi) + \log(\sigma_i^2) + \left(\frac{y_j - \mu_i}{\sigma_i^2} \right)^2\]

Mean changes: \(\theta = \{\mu\} \)

\[C(y_{(\tau_i+1),\tau_i}) = \sum_{j=\tau_i}^{\tau_i} \left(y_j - n_i^{-1} S_i \right)^2 \]

Variance changes: \(\theta = \{\sigma^2\} \)

\[C(y_{(\tau_i+1),\tau_i}) = n_i \left(\log \left(\sum_{j=\tau_i}^{\tau_i} (y_j - \mu)^2 \right) - \log n_i \right) \]

Both mean and variance change: \(\theta = \{\mu, \sigma^2\} \)

\[C(y_{(\tau_i+1),\tau_i}) = n_i \left(\log \left(\sum_{j=\tau_i}^{\tau_i} (y_j - n_i^{-1} S_i)^2 \right) - \log n_i \right) \]

Gamma distribution: \(\Theta = \{a, b\} \)

\[-2\log L = 2 \times \sum_{i=1}^{m} \sum_{j=\tau_i}^{\tau_i} \log \Gamma(a_i) + a_i \log b_i + (1 - a_i) \log y_j + \frac{y_j}{b_i} \]

Scale changes: \(\theta = \{b\} \)

\[C(y_{(\tau_i+1),\tau_i}) = 2an_i (\log S_i - \log (an_i)) \]

Exponential Distribution: \(\Theta = \{\lambda\} \)

\[-2\log L = 2 \times \sum_{i=1}^{m} \sum_{j=\tau_i}^{\tau_i} \log \lambda_i + \frac{y_j}{\lambda_i} \]

Mean changes: \(\theta = \{\lambda\} \)

\[C(y_{(\tau_i+1),\tau_i}) = 2n_i (\log S_i - \log n_i) \]

Poisson distribution: \(\Theta = \{\lambda\} \)

\[-2\log L = 2 \times \sum_{i=1}^{m} \sum_{j=\tau_i}^{\tau_i} \lambda_i - \text{floor } y_j + 0.5 \log \lambda_i + \log \Gamma(\text{floor } y_j + 0.5 + 1) \]

\[g13ndc.2 \quad Mark 25 \]
Mean changes: $\theta = \{\lambda\}$

$$C(y_{t_i+1-t_i}) = 2S_i(\log n_i - \log S_i)$$

when calculating S_i for the Poisson distribution, the sum is calculated for floor $y_i + 0.5$ rather than y_i.

4 References

5 Arguments

1: **ctype** – Nag_TS_ChangeType

Input

On entry: a flag indicating the assumed distribution of the data and the type of change point being looked for.

- **ctype** = Nag_NormalMean
 Data from a Normal distribution, looking for changes in the mean, μ.

- **ctype** = Nag_NormalStd
 Data from a Normal distribution, looking for changes in the standard deviation σ.

- **ctype** = Nag_NormalMeanStd
 Data from a Normal distribution, looking for changes in the mean, μ and standard deviation σ.

- **ctype** = Nag_GammaScale
 Data from a Gamma distribution, looking for changes in the scale parameter b.

- **ctype** = Nag_ExponentialLambda
 Data from an exponential distribution, looking for changes in λ.

- **ctype** = Nag_PoissonLambda
 Data from a Poisson distribution, looking for changes in λ.

Constraint: **ctype** = Nag_NormalMean, Nag_NormalStd, Nag_NormalMeanStd, Nag_GammaScale, Nag_ExponentialLambda or Nag_PoissonLambda.

2: **n** – Integer

Input

On entry: n, the length of the time series.

Constraint: $n \geq 2$.

3: **y[n]** – const double

Input

On entry: y, the time series.

if **ctype** = Nag_PoissonLambda, that is the data is assumed to come from a Poisson distribution, floor $y + 0.5$ is used in all calculations.

Constraints:

- if **ctype** = Nag_GammaScale, Nag_ExponentialLambda or Nag_PoissonLambda, $y[i - 1] \geq 0$, for $i = 1, 2, \ldots, n$;
- if **ctype** = Nag_PoissonLambda, each value of y must be representable as an integer;
- if **ctype** \neq Nag_PoissonLambda, each value of y must be small enough such that $y[i - 1]^2$, for $i = 1, 2, \ldots, n$, can be calculated without incurring overflow.
4: beta – double
 Input

 On entry: β, the penalty term.

 There are a number of standard ways of setting β, including:

 SIC or BIC

 \[\beta = p \times \log(n) \]

 AIC

 \[\beta = 2p \]

 Hannan-Quinn

 \[\beta = 2p \times \log(\log(n)) \]

 where p is the number of parameters being treated as estimated in each segment. This is usually set to 2 when `ctype` = Nag_NormalMeanStd and 1 otherwise.

 If no penalty is required then set $\beta = 0$. Generally, the smaller the value of β the larger the number of suggested change points.

5: minss – Integer
 Input

 On entry: the minimum distance between two change points, that is $\tau_i - \tau_{i-1} \geq \text{minss}$.

 Constraint: \(\text{minss} \geq 2 \).

6: param[1] – const double
 Input

 On entry: ϕ, values for the parameters that will be treated as fixed. If `ctype` \neq Nag_GammaScale, `param` may be set to NULL.

 If `ctype` = Nag_NormalMean

 if `param` is NULL, σ, the standard deviation of the Normal distribution, is estimated from the full input data. Otherwise $\sigma = \text{param}[0]$.

 If `ctype` = Nag_NormalStd

 If `param` is NULL, μ, the mean of the Normal distribution, is estimated from the full input data. Otherwise $\mu = \text{param}[0]$.

 If `ctype` = Nag_GammaScale, `param[0]` must hold the shape, a, for the Gamma distribution, otherwise `param` is not referenced.

 Constraint: if `ctype` = Nag_NormalMean or Nag_GammaScale, `param[0] > 0.0`.

7: mdepth – Integer
 Input

 On entry: K, the maximum depth for the iterative process, which in turn puts an upper limit on the number of change points with \(m \leq 2^K \).

 If $K \leq 0$ then no limit is put on the depth of the iterative process and no upper limit is put on the number of change points, other than that inherent in the length of the series and the value of `minss`.

8: ntau – Integer *
 Output

 On exit: m, the number of change points detected.

9: tau[dim] – Integer
 Output

 Note: the dimension, `dim`, of the array `tau` must be at least

 \[\min(\text{ceiling} \frac{n}{\text{minss}}, 2^{\text{mdepth}}) \text{ when mdepth > 0;} \]

 \[\text{ceiling} \frac{n}{\text{minss}} \text{ otherwise.} \]

 On exit: the first m elements of `tau` hold the location of the change points. The ith segment is defined by $y(\tau_{i-1}+1)$ to y_{τ_i}, where $\tau_0 = 0$ and $\tau_i = \text{tau}[i-1], 1 \leq i \leq m$.
The remainder of \mathbf{tau} is used as workspace.

10: \texttt{\{sparam\[2 \times n\] – double\}} \quad \textit{Output}

\textit{On exit:} the estimated values of the distribution parameters in each segment

- $\texttt{ctype} = \text{Nag_NormalMean}, \text{Nag_NormalStd} \text{ or } \text{Nag_NormalMeanStd}$
- $\texttt{sparam}[2i-2] = \mu_i$ and $\texttt{sparam}[2i-1] = \sigma_i$ for $i = 1, 2, \ldots, m$, where μ_i and σ_i is the mean and standard deviation, respectively, of the values of y in the ith segment.

It should be noted that $\sigma_i = \sigma_j$ when $\texttt{ctype} = \text{Nag_NormalMean}$ and $\mu_i = \mu_j$ when $\texttt{ctype} = \text{Nag_NormalStd}$, for all i and j.

- $\texttt{ctype} = \text{Nag_GammaScale}$
- $\texttt{sparam}[2i-2] = a_i$ and $\texttt{sparam}[2i-1] = b_i$ for $i = 1, 2, \ldots, m$, where a_i and b_i are the shape and scale parameters, respectively, for the values of y in the ith segment. It should be noted that $a_i = \texttt{param}[0]$ for all i.

- $\texttt{ctype} = \text{Nag_ExponentialLambda}$ or Nag_PoissonLambda
- $\texttt{sparam}[i-1] = \lambda_i$ for $i = 1, 2, \ldots, m$, where λ_i is the mean of the values of y in the ith segment.

The remainder of \texttt{sparam} is used as workspace.

11: \texttt{\{fail – NagError *\}} \quad \textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \texttt{\{value\}} had an illegal value.

\textbf{NE_INT}

- On entry, $\texttt{minss} = \texttt{\{value\}}$.
 - Constraint: $\texttt{minss} \geq 2$.

- On entry, $\texttt{n} = \texttt{\{value\}}$.
 - Constraint: $\texttt{n} \geq 2$.

\textbf{NE_INTERNAL_ERROR}

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

\textbf{NE_NO_LICENCE}

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

\textbf{NE_REAL}

- On entry, $\texttt{ctype} = \texttt{\{value\}}$ and $\texttt{param}[0] = \texttt{\{value\}}$.
 - Constraint: if $\texttt{ctype} = \text{Nag_NormalMean}$ or Nag_GammaScale and \texttt{param} is not NULL, then $\texttt{param}[0] > 0.0$.
On entry, `ctype = value` and `y[value] = value`.
Constraint: if `ctype = Nag_GammaScale, Nag_ExponentialLambda` or `Nag_PoissonLambda` then
`y[i - 1] >= 0.0`, for `i = 1, 2, ..., n`.
On entry, `y[value] = value`, is too large.

To avoid overflow some truncation occurred when calculating the cost function, `C`. All output is
returned as normal.

To avoid overflow some truncation occurred when calculating the parameter estimates returned in
`sparam`. All output is returned as normal.

The calculation of means and sums of squares about the mean during the evaluation of the cost functions
are based on the one pass algorithm of West (1979) and are believed to be stable.

nag_tsa_cp_binary (g13ndc) is threaded by NAG for parallel execution in multithreaded implementations
of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

None.

This example identifies changes in the mean, under the assumption that the data is normally distributed,
for a simulated dataset with 100 observations. A BIC penalty is used, that is \(\beta = \log n \approx 4.6 \), the
minimum segment size is set to 2 and the variance is fixed at 1 across the whole input series.

/* nag_tsa_cp_binary (g13ndc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group. *
 * Mark 25, 2014. *
 */
/* Pre-processor includes */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag_tsa.h>
#include <nag13.h>

int main(void)
{
 /* Integer scalar and array declarations */
 Integer i, minss, n, ntau, mdepth;
 Integer exit_status = 0;
 Integer *tau = 0;

 /* NAG structures and types */
 NagError fail;
 Nag_TS_ChangeType ctype;
Nag_Boolean param_supplied;

/* Double scalar and array declarations */
double beta;
double *param = 0, *sparam = 0, *y = 0;

/* Character scalar and array declarations */
char cctype[40], cparam_supplied[40];

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_tsa_cp_binary (g13ndc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n] ");
#else
 scanf("%*[\n] ");
#endif

/* Read in the problem size */
#ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n] ",&n);
#else
 scanf("%"NAG_IFMT"%*[\n] ",&n);
#endif

/* Allocate memory to hold the input series */
if (!(y = NAG_ALLOC(n, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read in the input series */
for (i = 0; i < n; i++)
{
#ifdef _WIN32
 scanf_s("%lf", &y[i]);
#else
 scanf("%lf", &y[i]);
#endif
}

/* Read in the type of change point, penalty, minimum segment size */
/* and maximum depth */
#ifdef _WIN32
 scanf_s("%39s%39s%lf"NAG_IFMT"%*[\n] ", cctype, _countof(cctype),
 cparam_supplied, _countof(cparam_supplied), &beta, &minss, &mdepth);
#else
 scanf("%39s%39s%lf"NAG_IFMT"%*[\n] ", cctype, cparam_supplied,
 &beta, &minss, &mdepth);
#endif
ctype = (Nag_TS_ChangeType) nag_enum_name_to_value(cctype);
param_supplied = (Nag_Boolean) nag_enum_name_to_value(cparam_supplied);

/* Read in the distribution parameter (if required) */
if (param_supplied)
{
 if (!param = NAG_ALLOC(1, double))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
ifdef _WIN32
 scanf_s("%lf",¶m[0]);
#else
 scanf("%lf",¶m[0]);
#endif
ifdef _WIN32
 scanf_s("%*[^\n] ");
#else
 scanf("%*[^\n] ");
#endif

/* Allocate output arrays */
if (!(tau = NAG_ALLOC(n, Integer)) ||
 !(sparam = NAG_ALLOC(2*n+2,double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Call nag_tsa_cp_binary (g13ndc) to to detect change points */
if (fail.code != NE_NOERROR)
{
 if (fail.code != NW_TRUNCATED) {
 printf("Error from nag_tsa_cp_binary (g13ndc)\n", fail.message);
 exit_status = 1;
 goto END;
 }
}

/* Display the results */
if (ctype == Nag_ExponentialLambda || ctype == Nag_PoissonLambda)
{
 /* Exponential or Poisson distribution */
 printf(" -- Change Points -- Distribution\n");
 printf(" Number Position Parameter\n");
 printf("===\n");
 for (i = 0; i < ntau; i++)
 {
 printf("%4"NAG_IFMT"%6"NAG_IFMT"%12.2f
", i+1, tau[i], sparam[i]);
 }
}
else
{
 /* Normal or Gamma distribution */
 printf(" -- Change Points -- --- Distribution ---\n");
 printf(" Number Position Parameters\n");
 printf("===\n");
 for (i = 0; i < ntau; i++)
 {
 printf("%4"NAG_IFMT"%6"NAG_IFMT"%12.2f %12.2f
", i+1, tau[i], sparam[2*i], sparam[2*i+1]);
 }
}
if (fail.code == NW_TRUNCATED)
{
 printf("Some truncation occurred internally to avoid overflow.\n");
}

END:
NAG_FREE(y);
NAG_FREE(param);
NAG_FREE(tau);
NAG_FREE(sparam);
return(exit_status);
}

10.2 Program Data

nag_tsa_cp_binary (g13ndc) Example Program Data
100 :: n
0.00 0.78 -0.02 0.17 0.04 -1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 -1.34
0.04 -0.14 2.78 1.83 0.98 0.19 0.57 -1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 -0.34 2.95 1.08 2.16 2.27
-0.14 -0.24 0.27 1.71 -0.04 -1.03 -0.12 -0.67 1.15 -1.10
-1.37 0.59 0.44 0.63 -0.06 -0.62 0.39 -2.63 -1.63 -0.42
-0.73 0.85 0.26 0.48 -0.26 -1.77 -1.39 1.68 0.43 :: End of y
Nag_NormalMean Nag_TRUE 4.6 2 0 :: ctype,param_supplied,beta,minss,mdepth
1.0 :: param[0]

10.3 Program Results

nag_tsa_cp_binary (g13ndc) Example Program Results

-- Change Points -- --- Distribution ---
Number Position Parameters
==
1 12 0.34 1.00
2 32 2.57 1.00
3 70 1.18 1.00
4 100 -0.23 1.00

This example plot shows the original data series, the estimated change points and the estimated mean in each of the identified segments.