NAG Library Function Document

nag_forecast_agarchII (g13fdc)

1 Purpose

nag_forecast_agarchII (g13fdc) forecasts the conditional variances, \(h_t \), \(t = 1, \ldots, \tau \) from a type II AGARCH\((p,q)\) sequence, where \(\tau \) is the forecast horizon (see Engle and Ng (1993)).

2 Specification

```c
#include <nag.h>
#include <nagg13.h>

void nag_forecast_agarchII (Integer num, Integer nt, Integer p, Integer q,
   const double theta[], double gamma, double fht[], const double ht[],
   const double et[], NagError *fail)
```

3 Description

Assume the GARCH\((p,q)\) process can be represented by:

\[
\epsilon_t | \psi_{t-1} \sim N(0, h_t)
\]

\[
h_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i (|\epsilon_{t-i}| + \gamma \epsilon_{t-i})^2 + \sum_{i=1}^{p} \beta_i h_{t-i}, \quad t = 1, \ldots, T
\]

has been modelled by nag_estimate_agarchII (g13fcc) and the estimated conditional variances and residuals are contained in the arrays `ht` and `et` respectively. Then nag_forecast_agarchII (g13fdc) will use the last \(\max(p,q) \) elements of the arrays `ht` and `et` to estimate the conditional variance forecasts, \(h_t | \psi_T \), where \(t = T + 1, \ldots, T + \tau \) and \(\tau \) is the forecast horizon.

4 References

5 Arguments

1: num – Integer

 Input

 On entry: the number of terms in the arrays `ht` and `et` from the modelled sequence.

 Constraint: \(\max(p,q) \leq \text{num}. \)

2: nt – Integer

 Input

 On entry: \(\tau \), the forecast horizon.

 Constraint: \(\text{nt} > 0. \)
3: \(p \) – Integer
 Input

 On entry: the GARCH\((p, q)\) argument \(p \).

 Constraint: \(0 < \max(p, q) \leq \text{num}, p \geq 0 \).

4: \(q \) – Integer
 Input

 On entry: the GARCH\((p, q)\) argument \(q \).

 Constraint: \(0 < \max(p, q) \leq \text{num}, q \geq 1 \).

5: \(\text{theta}[q + p + 1] \) – const double
 Input

 On entry: the first element must contain the coefficient \(\alpha_0 \) and the next \(q \) elements must contain the coefficients \(\alpha_i \), for \(i = 1, 2, \ldots, q \). The remaining \(p \) elements must contain the coefficients \(\beta_j \), for \(j = 1, 2, \ldots, p \).

6: \(\text{gamma} \) – double
 Input

 On entry: the asymmetry argument \(\gamma \) for the GARCH\((p, q)\) sequence.

7: \(\text{fht}[\text{nt}] \) – double
 Output

 On exit: the forecast values of the conditional variance, \(h_t \), for \(t = 1, 2, \ldots, \tau \).

8: \(\text{ht}[\text{num}] \) – const double
 Input

 On entry: the sequence of past conditional variances for the GARCH\((p, q)\) process, \(h_t \), for \(t = 1, 2, \ldots, T \).

9: \(\text{et}[\text{num}] \) – const double
 Input

 On entry: the sequence of past residuals for the GARCH\((p, q)\) process, \(\epsilon_t \), for \(t = 1, 2, \ldots, T \).

10: \(\text{fail} \) – NagError*
 Input/Output

 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 **Error Indicators and Warnings**

NE_2_INT_ARG_LT

On entry, \(\text{num} = \langle \text{value} \rangle \) while \(\max(p, q) = \langle \text{value} \rangle \). These arguments must satisfy \(\text{num} \geq \max(p, q) \).

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, \(\text{nt} = \langle \text{value} \rangle \).

Constraint: \(\text{nt} \geq 1 \).

On entry, \(\text{num} = \langle \text{value} \rangle \).

Constraint: \(\text{num} \geq 0 \).

On entry, \(p = \langle \text{value} \rangle \).

Constraint: \(p \geq 0 \).

On entry, \(q = \langle \text{value} \rangle \).

Constraint: \(q \geq 1 \).
7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
None.

10 Example
See the example for nag_estimate_agarchII (g13fcc).