
NAG Library Function Document

nag_kalman_unscented_state_revcom (g13ejc)

1 Purpose

nag_kalman_unscented_state_revcom (g13ejc) applies the Unscented Kalman Filter to a nonlinear state
space model, with additive noise.

nag_kalman_unscented_state_revcom (g13ejc) uses reverse communication for evaluating the nonlinear
functionals of the state space model.

2 Specification

#include <nag.h>
#include <nagg13.h>

void nag_kalman_unscented_state_revcom (Integer *irevcm, Integer mx,
Integer my, const double y[], const double lx[], Integer pdlx,
const double ly[], Integer pdly, double x[], double st[], Integer pdst,
Integer *n, double xt[], Integer pdxt, double fxt[], Integer pdfxt,
const double ropt[], Integer lropt, Integer icomm[], Integer licomm,
double rcomm[], Integer lrcomm, NagError *fail)

3 Description

nag_kalman_unscented_state_revcom (g13ejc) applies the Unscented Kalman Filter (UKF), as described
in Julier and Uhlmann (1997b) to a nonlinear state space model, with additive noise, which, at time t,
can be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

where xt represents the unobserved state vector of length mx and yt the observed measurement vector of
length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y.

3.1 Unscented Kalman Filter Algorithm

Given x̂0, an initial estimate of the state and P0 and initial estimate of the state covariance matrix, the
UKF can be described as follows:

(a) Generate a set of sigma points (see section Section 3.2):

X t ¼ x̂t�1 x̂t�1 þ �
ffiffiffiffiffiffiffiffiffi
Pt�1

p
x̂t�1 � �

ffiffiffiffiffiffiffiffiffi
Pt�1

ph i
ð1Þ

(b) Evaluate the known model function F :

F t ¼ F X tð Þ ð2Þ

The function F is assumed to accept the mx � n matrix, X t and return an mx � n matrix, F t. The
columns of both X t and F t correspond to different possible states. The notation F t;i is used to
denote the ith column of F t, hence the result of applying F to the ith possible state.

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.1

(c) Time Update:

x̂t ¼
Xn
i¼1

Wm
i F t;i ð3Þ

Pt ¼
Xn
i¼1

Wc
i F t;i � x̂t
� �

F t;i � x̂t
� �T þ�x ð4Þ

(d) Redraw another set of sigma points (see section Section 3.2):

Yt ¼ x̂t x̂t þ �
ffiffiffiffiffi
Pt

p
x̂t � �

ffiffiffiffiffi
Pt

ph i
ð5Þ

(e) Evaluate the known model function H:

Ht ¼ H Ytð Þ ð6Þ

The function H is assumed to accept the mx � n matrix, Yt and return an my � n matrix, Ht. The
columns of both Yt and Ht correspond to different possible states. As above Ht;i is used to denote
the ith column of Ht.

(f) Measurement Update:

ŷt ¼
Xn
i¼1

Wm
i Ht;i ð7Þ

Pyyt ¼
Xn
i¼1

Wc
i Ht;i � ŷt
� �

Ht;i � ŷt
� �T þ�y ð8Þ

Pxyt ¼
Xn
i¼1

Wc
i F t;i � x̂t
� �

Ht;i � ŷt
� �T ð9Þ

Kt ¼ PxytP�1
yyt

ð10Þ
x̂t ¼ x̂t þKt yt � ŷtð Þ ð11Þ
Pt ¼ Pt �KtPyytKT

t ð12Þ
Here Kt is the Kalman gain matrix, x̂t is the estimated state vector at time t and Pt the corresponding
covariance matr ix. Rather than implementing the standard UKF as stated above
nag_kalman_unscented_state_revcom (g13ejc) uses the square-root form described in the Haykin (2001).

3.2 Sigma Points

A nonlinear state space model involves propagating a vector of random variables through a nonlinear
system and we are interested in what happens to the mean and covariance matrix of those variables.
Rather than trying to directly propagate the mean and covariance matrix, the UKF uses a set of carefully
chosen sample points, referred to as sigma points, and propagates these through the system of interest.
An estimate of the propagated mean and covariance matrix is then obtained via the weighted sample
mean and covariance matrix.

For a vector of m random variables, x, with mean � and covariance matrix �, the sigma points are
usually constructed as:

X t ¼ � �þ �
ffiffiffiffi
�
p

�� �
ffiffiffiffi
�
ph i

When calculating the weighted sample mean and covariance matrix two sets of weights are required, one
used when calculating the weighted sample mean, denoted Wm and one used when calculated the
weighted sample covariance matrix, denoted Wc. The weights and multiplier, �, are constructed as
follows:

g13ejc NAG Library Manual

g13ejc.2 Mark 25

� ¼ �2 Lþ �ð Þ � L
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �
p

Wm
i ¼

�
Lþ� i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

(

Wc
i ¼

�
Lþ�þ 1� �2 þ � i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

(

where, usually L ¼ m and �; � and � are constants. The total number of sigma points, n, is given by
2Lþ 1. The constant � is usually set to somewhere in the range 10�4 � � � 1 and for a Gaussian
distribution, the optimal values of � and � are 3� L and 2 respectively.

Rather than redrawing another set of sigma points in (d) of the UKF an alternative method can be used
where the sigma points used in (a) are augmented to take into account the process noise. This involves
replacing equation (5) with:

Yt ¼ X t X t;1 þ �
ffiffiffiffiffiffiffi
�x

p
X t;1 � �

ffiffiffiffiffiffiffi
�x

ph i
ð13Þ

Augmenting the sigma points in this manner requires setting L to 2L (and hence n to 2n� 1) and
recalculating the weights. These new values are then used for the rest of the algorithm. The advantage of
augmenting the sigma points is that it keeps any odd-moments information captured by the original
propagated sigma points, at the cost of using a larger number of points.

4 References

Haykin S (2001) Kalman Filtering and Neural Networks John Wiley and Sons

Julier S J (2002) The scaled unscented transformation Proceedings of the 2002 American Control
Conference (Volume 6) 4555–4559

Julier S J and Uhlmann J K (1997a) A consistent, debiased method for converting between polar and
Cartesian coordinate systems Proceedings of AeroSense97, International Society for Optics and
Phonotonics 110–121

Julier S J and Uhlmann J K (1997b) A new extension of the Kalman Filter to nonlinear systems
International Symposium for Aerospace/Defense, Sensing, Simulation and Controls (Volume 3) 26

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-
entries, all arguments other than fxt must remain unchanged.

1: irevcm – Integer * Input/Output

On initial entry: must be set to 0 or 3.

If irevcm ¼ 0, it is assumed that t ¼ 0, otherwise it is assumed that t 6¼ 0 and that
nag_kalman_unscented_state_revcom (g13ejc) has been called at least once before at an earlier
time step.

On intermediate exit: irevcm ¼ 1 or 2. The value of irevcm specifies what intermediate values are
returned by this function and what values the calling program must assign to arguments of
nag_kalman_unscented_state_revcom (g13ejc) before re-entering the routine. Details of the output
and required input are given in the individual argument descriptions.

On intermediate re-entry: irevcm must remain unchanged.

On final exit: irevcm ¼ 3

Constraint: irevcm ¼ 0, 1, 2 or 3.

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.3

2: mx – Integer Input

On entry: mx, the number of state variables.

Constraint: mx � 1.

3: my – Integer Input

On entry: my, the number of observed variables.

Constraint: my � 1.

4: y½my� – const double Input

On entry: yt, the observed data at the current time point.

5: lx½dim� – const double Input

Note: the dimension, dim, of the array lx must be at least pdlx�mx.

The i; jð Þth element of the matrix is stored in lx½ j� 1ð Þ � pdlxþ i� 1�.
On entry: Lx, such that LxLT

x ¼ �x, i.e., the lower triangular part of a Cholesky decomposition of
the process noise covariance structure. Only the lower triangular part of the matrix stored in lx is
referenced.

If pdlx ¼ 0, there is no process noise (vt ¼ 0 for all t) and lx is not referenced and may be
NULL.

If �x is time dependent, then the value supplied should be for time t.

6: pdlx – Integer Input

On entry: the stride separating matrix row elements in the array lx.

Constraint: pdlx ¼ 0 or pdlx � mx.

7: ly½dim� – const double Input

Note: the dimension, dim, of the array ly must be at least pdly�my.

The i; jð Þth element of the matrix is stored in ly½ j� 1ð Þ � pdlyþ i� 1�.
On entry: Ly, such that LyLT

y ¼ �y, i.e., the lower triangular part of a Cholesky decomposition of

the observation noise covariance structure. Only the lower triangular part of the matrix stored in ly
is referenced.

If �y is time dependent, then the value supplied should be for time t.

8: pdly – Integer Input

On entry: the stride separating matrix row elements in the array ly.

Constraint: pdly � my.

9: x½mx� – double Input/Output

On initial entry: x̂t�1 the state vector for the previous time point.

On intermediate exit: when

irevcm ¼ 1
x is unchanged.

irevcm ¼ 2
x̂t.

On intermediate re-entry: x must remain unchanged.

On final exit: x̂t the updated state vector.

g13ejc NAG Library Manual

g13ejc.4 Mark 25

10: st½dim� – double Input/Output

Note: the dimension, dim, of the array st must be at least pdst�mx.

The i; jð Þth element of the matrix is stored in st½ j� 1ð Þ � pdstþ i� 1�.
On initial entry: St, such that St�1S

T
t�1 ¼ Pt�1, i.e., the lower triangular part of a Cholesky

decomposition of the state covariance matrix at the previous time point. Only the lower triangular
part of the matrix stored in st is referenced.

On intermediate exit: when

irevcm ¼ 1
st is unchanged.

irevcm ¼ 2
St, the lower triangular part of a Cholesky factorization of Pt.

On intermediate re-entry: st must remain unchanged.

On final exit: St, the lower triangular part of a Cholesky factorization of the updated state
covariance matrix.

11: pdst – Integer Input

On entry: the stride separating matrix row elements in the array st.

Constraint: pdst � mx.

12: n – Integer * Input/Output

On initial entry: the value used in the sizing of the fxt and xt arrays. The value of n supplied must
be at least as big as the maximum number of sigma points that the algorithm will use.
nag_kalman_unscented_state_revcom (g13ejc) allows sigma points to be calculated in two ways
during the measurement update; they can be redrawn or augmented. Which is used is controlled
by ropt.

If redrawn sigma points are used, then the maximum number of sigma points will be 2mx þ 1,
otherwise the maximum number of sigma points will be 4mx þ 1.

On intermediate exit: the number of sigma points actually being used.

On intermediate re-entry: n must remain unchanged.

On final exit: reset to its value on initial entry.

Constraints: if irevcm ¼ 0 or 3,

if redrawn sigma points are used, n � 2�mxþ 1;
otherwise n � 4�mxþ 1.

13: xt½dim� – double Input/Output

Note: the dimension, dim, of the array xt must be at least pdxt�max my;nð Þ.
On initial entry: need not be set.

On intermediate exit: Xt when irevcm ¼ 1, otherwise Yt.

For the jth sigma point, the value for the ith parameter is held in xt½ j � 1ð Þ � pdxtþ i � 1�, for
i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n.

On intermediate re-entry: xt must remain unchanged.

On final exit: the contents of xt are undefined.

14: pdxt – Integer Input

On entry: the stride separating row elements in the two-dimensional data stored in the array xt.

Constraint: pdxt � mx.

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.5

15: fxt½dim� – double Input/Output

Note: the dimension, dim, of the array fxt must be at least pdfxt� ðnþmax mx;myð ÞÞ.
On initial entry: need not be set.

On intermediate exit: the contents of fxt are undefined.

On intermediate re-entry: F Xtð Þ when irevcm ¼ 1, otherwise H Ytð Þ for the values of Xt and Yt
held in xt.

For the jth sigma point the value for the ith parameter should be held in
fxt½ j � 1ð Þ � pdfxtþ i� 1�, for j ¼ 1; 2; . . . ; n. When irevcm ¼ 1, i ¼ 1; 2; . . . ;mx and when
irevcm ¼ 2, i ¼ 1; 2; . . . ;my.

On final exit: the contents of fxt are undefined.

16: pdfxt – Integer Input

On entry: the stride separating row elements in the two-dimensional data stored in the array fxt.

Constraint: pdfxt � max mx;myð Þ.

17: ropt½lropt� – const double Input

On entry: optional arguments. The default value will be used for ropt½i� 1� if lropt < i. Setting
lropt ¼ 0 will use the default values for all optional arguments and ropt need not be set and may
be NULL.

ropt½0�
If set to 1 then the second set of sigma points are redrawn, as given by equation (5). If set
to 2 then the second set of sigma points are generated via augmentation, as given by
equation (13).

Default is for the sigma points to be redrawn (i.e., ropt½0� ¼ 1)

ropt½1�
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 3�mx.

ropt½2�
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 1.

ropt½3�
�x, value of � used when constructing the first set of sigma points, X t.

Defaults to 2.

ropt½4�
Value of � used when constructing the second set of sigma points, Yt.

Defaults to 3� 2�mx when pdlx 6¼ 0 and the second set of sigma points are augmented and �x
otherwise.

ropt½5�
Value of � used when constructing the second set of sigma points, Yt.

Defaults to �x.

ropt½6�
Value of � used when constructing the second set of sigma points, Yt.

Defaults to �x.

Constraints:

ropt½0� ¼ 1 or 2;
ropt½1� > �mx;

g13ejc NAG Library Manual

g13ejc.6 Mark 25

ropt½4� > �2�mx when pdly 6¼ 0 and the second set of sigma points are augmented,
otherwise ropt½4� > �mx;
ropt½i� 1� > 0, for i ¼ 3; 6.

18: lropt – Integer Input

On entry: length of the options array ropt.

Constraint: 0 � lropt � 7.

19: icomm½licomm� – Integer Communication Array

On initial entry: icomm need not be set.

O n i n t e r m e d i a t e e x i t : i c o m m i s u s e d f o r s t o r a g e b e t w e e n c a l l s t o
nag_kalman_unscented_state_revcom (g13ejc).

On intermediate re-entry: icomm must remain unchanged.

On final exit: icomm is not defined.

20: licomm – Integer Input

On entry: the length of the array icomm. If licomm is too small and licomm � 2 then fail:code ¼
NE_TOO_SMALL is returned and the minimum value for licomm and lrcomm are given by
icomm½0� and icomm½1� respectively.

Constraint: licomm � 30.

21: rcomm½lrcomm� – double Communication Array

On initial entry: rcomm need not be set.

O n i n t e r m e d i a t e e x i t : r c o m m i s u s e d f o r s t o r a g e b e t w e e n c a l l s t o
nag_kalman_unscented_state_revcom (g13ejc).

On intermediate re-entry: rcomm must remain unchanged.

On final exit: rcomm is not defined.

22: lrcomm – Integer Input

On entry: the length of the array rcomm. If lrcomm is too small and licomm � 2 then fail:code ¼
NW_INT is returned and the minimum value for licomm and lrcomm are given by icomm½0� and
icomm½1� respectively.

Suggested value: lrcomm ¼ 30þmyþmx�myþ 1þ nbð Þ �max mx;myð Þ, where nb is the
optimal block size. In most cases a block size of 128 will be sufficient.

Constraint: lrcomm � 30þmyþmx�myþ 2�max mx;myð Þ.

23: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_ARRAY_SIZE

On entry, pdfxt ¼ valueh i and mx ¼ valueh i.
Constraint: if irevcm ¼ 1, pdfxt � mx.

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.7

On entry, pdfxt ¼ valueh i and my ¼ valueh i.
Constraint: if irevcm ¼ 2, pdfxt � my.

On entry, pdlx ¼ valueh i and mx ¼ valueh i.
Constraint: pdlx ¼ 0 or pdlx � mx.

On entry, pdly ¼ valueh i and my ¼ valueh i.
Constraint: pdly � my.

On entry, pdst ¼ valueh i and mx ¼ valueh i.
Constraint: pdst � mx.

On entry, pdxt ¼ valueh i and mx ¼ valueh i.
Constraint: pdxt � mx.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_ILLEGAL_COMM

icomm has been corrupted between calls.

rcomm has been corrupted between calls.

NE_INT

On entry, lropt ¼ valueh i.
Constraint: 0 � lropt � 7.

On entry, irevcm ¼ valueh i.
Constraint: irevcm ¼ 0, 1, 2 or 3.

On entry, mx ¼ valueh i.
Constraint: mx � 1.

On entry, my ¼ valueh i.
Constraint: my � 1.

On entry, augmented sigma points requested, n ¼ valueh i and mx ¼ valueh i.
Constraint: n � valueh i.
On entry, redrawn sigma points requested, n ¼ valueh i and mx ¼ valueh i.
Constraint: n � valueh i.

NE_INT_CHANGED

mx has changed between calls.
On intermediate entry, mx ¼ valueh i.
On initial entry, mx ¼ valueh i.

my has changed between calls.
On intermediate entry, my ¼ valueh i.
On initial entry, my ¼ valueh i.

n has changed between calls.
On intermediate entry, n ¼ valueh i.
On intermediate exit, n ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

g13ejc NAG Library Manual

g13ejc.8 Mark 25

NE_INVALID_OPTION

On entry, ropt½0� ¼ valueh i.
Constraint: ropt½0� ¼ 1 or 2.

On entry, ropt½ valueh i� ¼ valueh i.
Constraint: � > 0.

On entry, ropt½ valueh i� ¼ valueh i.
Constraint: � > valueh i.

NE_MAT_NOT_POS_DEF

A weight was negative and it was not possible to downdate the Cholesky factorization.

Unable to calculate the Cholesky factorization of the updated state covariance matrix.

Unable to calculate the Kalman gain matrix.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_TOO_SMALL

On entry, licomm ¼ valueh i.
Constraint: licomm � 2.
icomm is too small to return the required array sizes.

NW_INT

On entry, licomm ¼ valueh i and lrcomm ¼ valueh i.
Constraint: licomm � 30 and lrcomm � 30þmyþmx�myþ 2�max mx;myð Þ.
The minimum required values for licomm and lrcomm are returned in icomm½0� and icomm½1�
respectively.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_kalman_unscented_state_revcom (g13ejc) is not threaded by NAG in any implementation.

nag_kalman_unscented_state_revcom (g13ejc) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

As well as implementing the Unscented Kalman Filter, nag_kalman_unscented_state_revcom (g13ejc)
can also be used to apply the Unscented Transform (see Julier (2002)) to the function F , by setting
pdlx ¼ 0 and terminating the calling sequence when irevcm ¼ 2 rather than irevcm ¼ 3. In this
situation, on initial entry, x and st would hold the mean and Cholesky factorization of the covariance
matrix of the untransformed sample and on exit (when irevcm ¼ 2) they would hold the mean and
Cholesky factorization of the covariance matrix of the transformed sample.

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.9

10 Example

This example implements the following nonlinear state space model, with the state vector x and state
update function F given by:

mx ¼ 3

xtþ1 ¼ 	tþ1
tþ1 �tþ1

� �T

¼ F xtð Þ þ vt

¼ xt þ
cos �t � sin �t 0
sin �t cos �t 0
0 0 1

0
@

1
A 0:5r 0:5r

0 0
r=d �r=d

0
@

1
A �Rt

�Lt

� �
þ vt

where r and d are known constants and �Rt and �Lt are time-dependent knowns. The measurement
vector y and measurement function H is given by:

my ¼ 2

yt ¼ t; �tð ÞT

¼ H xtð Þ þ ut
¼ �� 	t cosA�
t sinA

�t �A

� �
þ ut

where A and � are known constants. The initial values, x0 and P0, are given by

x0 ¼
0
0
0

0
@

1
A; P0 ¼

0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A

and the Cholesky factorizations of the error covariance matrices, Lx and Lx by

Lx ¼
0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A ; Ly ¼ 0:01 0

0 0:01

� �
:

10.1 Program Text

/* nag_kalman_unscented_state_revcom (g13ejc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 25, 2014.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>
#include <nagx01.h>

#define LY(I,J) ly[(J) * pdly + (I)]
#define LX(I,J) lx[(J) * pdlx + (I)]
#define ST(I,J) st[(J) * pdst + (I)]
#define XT(I,J) xt[(J) * pdxt + (I)]
#define FXT(I,J) fxt[(J) * pdfxt + (I)]

typedef struct g13_problem_data {
double delta, a, r, d;
double phi_rt, phi_lt;

} g13_problem_data;

const Integer mx = 3, my = 2;
void f(Integer n, double *xt, Integer pdxt, double *fxt, Integer pdfxt,

g13_problem_data dat);
void h(Integer n, double *xt, Integer pdxt, double *fxt, Integer pdfxt,

g13_problem_data dat);

g13ejc NAG Library Manual

g13ejc.10 Mark 25

void read_problem_dat(Integer t, g13_problem_data *dat);

int main(void)
{

/* Integer scalar and array declarations */
Integer i, irevcm, pdfxt, pdlx, pdly, pdst, pdxt, licomm, lrcomm, lropt,

n, ntime, t, j;
Integer *icomm = 0;
Integer exit_status = 0;

/* NAG structures and types */
NagError fail;

/* Double scalar and array declarations */
double *fxt = 0, *lx = 0, *ly = 0, *rcomm = 0, *ropt = 0,

*st = 0, *x = 0, *xt = 0, *y = 0;

/* Other structures */
g13_problem_data dat;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_kalman_unscented_state_revcom (g13ejc) "
"Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Using default optional arguments */
lropt = 0;

/* Allocate arrays */
n = 2*mx + 1;
if (lropt >= 1 && fabs(ropt[0]-2.0)<=0.0) {

n += 2*mx;
}
pdlx = pdst = pdxt = mx;
pdly = my;
pdfxt = (mx > my) ? mx : my;
licomm = 30;
lrcomm = 30 + my + mx*my + 2*((mx > my) ? mx : my);
if (!(lx = NAG_ALLOC(pdlx*mx, double)) ||

!(ly = NAG_ALLOC(pdly*my, double)) ||
!(x = NAG_ALLOC(mx, double)) ||
!(st = NAG_ALLOC(pdst*mx, double)) ||
!(xt = NAG_ALLOC(pdxt*(my > n ? my : n), double)) ||
!(fxt = NAG_ALLOC(pdfxt*(n+(mx > my ? mx : my)), double)) ||
!(icomm = NAG_ALLOC(licomm, Integer)) ||
!(rcomm = NAG_ALLOC(lrcomm, double)) ||
!(y = NAG_ALLOC(my, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the cholesky factorisation of the covariance matrix for the
process noise */

for (i = 0; i < mx; i++) {
for (j = 0; j <= i; j++) {

#ifdef _WIN32
scanf_s("%lf",&LX(i,j));

#else
scanf("%lf",&LX(i,j));

#endif
}

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.11

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Read in the cholesky factorisation of the covariance matrix for the
observation noise */

for (i = 0; i < my; i++) {
for (j = 0; j <= i; j++) {

#ifdef _WIN32
scanf_s("%lf",&LY(i,j));

#else
scanf("%lf",&LY(i,j));

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Read in the initial state vector */
for (i = 0; i < mx; i++) {

#ifdef _WIN32
scanf_s("%lf",&x[i]);

#else
scanf("%lf",&x[i]);

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

/* Read in the cholesky factorisation of the initial state covariance
matrix */

for (i = 0; i < mx; i++) {
for (j = 0; j <= i; j++) {

#ifdef _WIN32
scanf_s("%lf",&ST(i,j));

#else
scanf("%lf",&ST(i,j));

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Read in the number of time points to run the system for */
#ifdef _WIN32

scanf_s("%"NAG_IFMT"%*[^\n] ",&ntime);
#else

scanf("%"NAG_IFMT"%*[^\n] ",&ntime);
#endif

/* Read in any problem specific data that is constant */
read_problem_dat(0, &dat);

/* Title for first set of output */
printf(" Time ");
for (i = 0; i < (11*mx- 16)/2; i++) putchar(’ ’);
printf("Estimate of State\n ");
for (i = 0; i < 7+11*mx; i++) putchar(’-’);
printf("\n");

g13ejc NAG Library Manual

g13ejc.12 Mark 25

/* Loop over each time point */
irevcm = 0;
for (t = 0; t < ntime; t++) {

/* Read in any problem specific data that is time dependent */
read_problem_dat(t+1, &dat);

/* Read in the observed data for time t */
for (i = 0; i < my; i++) {

#ifdef _WIN32
scanf_s("%lf",&y[i]);

#else
scanf("%lf",&y[i]);

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

/* Call Unscented Kalman Filter routine (g13ejc) */
do {

nag_kalman_unscented_state_revcom(&irevcm, mx, my, y, lx, pdlx, ly, pdly,
x, st, pdst, &n, xt, pdxt, fxt, pdfxt,
ropt, lropt, icomm, licomm, rcomm,
lrcomm, &fail);

switch(irevcm) {
case 1:

/* Evaluate F(X) */
f(n,xt,pdxt,fxt,pdfxt,dat);
break;

case 2:
/* Evaluate H(X) */
h(n,xt,pdxt,fxt,pdfxt,dat);
break;

default:
/* irevcm = 3, finished */
if (fail.code != NE_NOERROR) {

printf("Error from nag_kalman_unscented_state_revcom (g13ejc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
break;

}
} while(irevcm != 3);

/* Display the some of the current state estimate */
printf(" %3"NAG_IFMT" ",t+1);
for (i = 0; i < mx; i++) {

printf(" %10.3f",x[i]);
}
printf("\n");

}

printf("\n");
printf("Estimate of Cholesky Factorisation of the State\n");
printf("Covariance Matrix at the Last Time Point\n");
for (i = 0; i < mx; i++) {

for (j = 0; j <= i; j++) {
printf(" %10.2e",ST(i,j));

}
printf("\n");

}

END:
NAG_FREE(icomm);

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.13

NAG_FREE(fxt);
NAG_FREE(lx);
NAG_FREE(ly);
NAG_FREE(rcomm);
NAG_FREE(ropt);
NAG_FREE(st);
NAG_FREE(x);
NAG_FREE(xt);
NAG_FREE(y);

return(exit_status);
}

void f(Integer n, double *xt, Integer pdxt, double *fxt, Integer pdfxt,
g13_problem_data dat) {

double t1, t3;
Integer i;

t1 = 0.5 * dat.r * (dat.phi_rt+dat.phi_lt);
t3 = (dat.r/dat.d)*(dat.phi_rt-dat.phi_lt);

for (i = 0; i < n; i++) {
FXT(0,i) = XT(0,i) + cos(XT(2,i))*t1;
FXT(1,i) = XT(1,i) + sin(XT(2,i))*t1;
FXT(2,i) = XT(2,i) + t3;

}
}

void h(Integer n, double *xt, Integer pdxt, double *fxt, Integer pdfxt,
g13_problem_data dat) {

Integer i;

for (i = 0; i < n; i++) {
FXT(0,i) = dat.delta - XT(0,i)*cos(dat.a) - XT(1,i)*sin(dat.a);
FXT(1,i) = XT(2,i) - dat.a;

/* Make sure that the theta is in the same range as the observed data,
which in this case is [0, 2*pi) */

if (FXT(1,i) < 0.0)
FXT(1,i) += 2 * X01AAC;

}
}
void read_problem_dat(Integer t, g13_problem_data *dat) {

/* Read in any data specific to the f and h functions */
Integer tt;

if (t==0) {
/* Read in the data that is constant across all time points */

#ifdef _WIN32
scanf_s("%lf%lf%lf%lf%*[^\n] ",&(dat->r), &(dat->d), &(dat->delta),

&(dat->a));
#else

scanf("%lf%lf%lf%lf%*[^\n] ",&(dat->r), &(dat->d), &(dat->delta),
&(dat->a));

#endif

} else {
/* Read in data for time point t */

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%lf%lf%*[^\n] ",&tt, &(dat->phi_rt), &(dat->phi_lt));

#else
scanf("%"NAG_IFMT"%lf%lf%*[^\n] ",&tt, &(dat->phi_rt), &(dat->phi_lt));

#endif
if (tt!=t) {

/* Sanity check */
printf("Expected to read in data for time point %"NAG_IFMT"\n",t);
printf("Data that was read in was for time point %"NAG_IFMT"\n",tt);

}
}

}

g13ejc NAG Library Manual

g13ejc.14 Mark 25

10.2 Program Data

nag_kalman_unscented_state_revcom (g13ejc) Example Program Data
0.1
0.0 0.1
0.0 0.0 0.1 :: End of lx
0.01
0.0 0.01 :: End of ly
0.0 0.0 0.0 :: Initial value for x
0.1
0.0 0.1
0.0 0.0 0.1 :: End of initial value for st
15 :: Number of time points
3.0 4.0 5.814 0.464 :: r, d, Delta, A
1 0.4 0.1

5.262 5.923
2 0.4 0.1

4.347 5.783
3 0.4 0.1

3.818 6.181
4 0.4 0.1

2.706 0.085
5 0.4 0.1

1.878 0.442
6 0.4 0.1

0.684 0.836
7 0.4 0.1

0.752 1.300
8 0.4 0.1

0.464 1.700
9 0.4 0.1

0.597 1.781
10 0.4 0.1

0.842 2.040
11 0.4 0.1

1.412 2.286
12 0.4 0.1

1.527 2.820
13 0.4 0.1

2.399 3.147
14 0.4 0.1

2.661 3.569
15 0.4 0.1

3.327 3.659 :: t, phi_rt, phi_lt, y = (delta_t, alpha_a)

10.3 Program Results

nag_kalman_unscented_state_revcom (g13ejc) Example Program Results

Time Estimate of State
--

1 0.664 -0.092 0.104
2 1.598 0.081 0.314
3 2.128 0.213 0.378
4 3.134 0.674 0.660
5 3.809 1.181 0.906
6 4.730 2.000 1.298
7 4.429 2.474 1.762
8 4.357 3.246 2.162
9 3.907 3.852 2.246

10 3.360 4.398 2.504
11 2.552 4.741 2.750
12 2.191 5.193 3.281
13 1.309 5.018 3.610
14 1.071 4.894 4.031
15 0.618 4.322 4.124

g13 – Time Series Analysis g13ejc

Mark 25 g13ejc.15

Estimate of Cholesky Factorisation of the State
Covariance Matrix at the Last Time Point

1.92e-01
-3.82e-01 2.22e-02
1.58e-06 2.23e-07 9.95e-03

The example described above can be thought of as relating to the movement of a hypothetical robot. The
unknown state, x, is the position of the robot (with respect to a reference frame) and facing, with 	;
ð Þ
giving the x and y coordinates and � the angle (with respect to the x-axis) that the robot is facing. The
robot has two drive wheels, of radius r on an axle of length d. During time period t the right wheel is
believed to rotate at a velocity of �Rt and the left at a velocity of �Lt. In this example, these velocities
are fixed with �Rt ¼ 0:4 and �Lt ¼ 0:1. The state update function, F , calculates where the robot should
be at each time point, given its previous position. However, in reality, there is some random fluctuation
in the velocity of the wheels, for example, due to slippage. Therefore the actual position of the robot and
the position given by equation F will differ.

In the area that the robot is moving there is a single wall. The position of the wall is known and defined
by its distance, �, from the origin and its angle, A, from the x-axis. The robot has a sensor that is able
to measure y, with being the distance to the wall and � the angle to the wall. The measurement
function H gives the expected distance and angle to the wall if the robot’s position is given by xt.
Therefore the state space model allows the robot to incorporate the sensor information to update the
estimate of its position.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

Example Program
Illustration of Position and Orientation

of Hypothetical Robot

W
all

Position
Initial

Actual
Updated

g13ejc NAG Library Manual

g13ejc.16 (last) Mark 25

	g13ejc
	1 Purpose
	2 Specification
	3 Description
	3.1 Unscented Kalman Filter Algorithm
	3.2 Sigma Points

	4 References
	Haykin (2001)
	Julier (2002)
	Julier and Uhlmann (1997a)
	Julier and Uhlmann (1997b)

	5 Arguments
	irevcm
	mx
	my
	y
	lx
	pdlx
	ly
	pdly
	x
	st
	pdst
	n
	xt
	pdxt
	fxt
	pdfxt
	ropt
	lropt
	icomm
	licomm
	rcomm
	lrcomm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ARRAY_SIZE
	NE_BAD_PARAM
	NE_ILLEGAL_COMM
	NE_INT
	NE_INT_CHANGED
	NE_INTERNAL_ERROR
	NE_INVALID_OPTION
	NE_MAT_NOT_POS_DEF
	NE_NO_LICENCE
	NE_TOO_SMALL
	NW_INT

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

