NAG Library Function Document

nag_kalman_sqrt_filt_cov_var (g13eac)

1 Purpose

nag_kalman_sqrt_filt_cov_var (g13eac) performs a combined measurement and time update of one iteration of the time-varying Kalman filter. The method employed for this update is the square root covariance filter with the system matrices in their original form.

2 Specification

```c
#include <nag.h>
#include <nagg13.h>

void nag_kalman_sqrt_filt_cov_var (Integer n, Integer m, Integer p,
                                 double s[], Integer tds, const double a[], Integer tda,
                                 const double b[], Integer tdb, const double q[], Integer tdq,
                                 const double c[], Integer tdc, const double r[], Integer tdr,
                                 double k[], Integer tdk, double h[], Integer tdh, double tol,
                                 NagError *fail)
```

3 Description

For the state space system defined by

\[
X_{i+1} = A_i X_i + B_i W_i \quad \text{var}(W_i) = Q_i,
\]
\[
Y_i = C_i X_i + V_i \quad \text{var}(V_i) = R_i
\]

the estimate of \(X_i \) given observations \(Y_1 \) to \(Y_{i-1} \) is denoted by \(\hat{X}_{i|i-1} \) with \(\text{var}(\hat{X}_{i|i-1}) = P_{i|i-1} = S_i S_i^T \).

nag_kalman_sqrt_filt_cov_var (g13eac) performs one recursion of the square root covariance filter algorithm, summarised as follows:

\[
\begin{pmatrix}
R_i^{1/2} & C_i S_i & 0 \\
0 & A_i S_i & B_i Q_i^{1/2}
\end{pmatrix}
U = \begin{pmatrix}
H_i^{1/2} & 0 & 0 \\
G_i & S_{i+1} & 0
\end{pmatrix}
\]

where \(U \) is an orthogonal transformation triangularizing the pre-array. The triangularisation is carried out via Householder transformations exploiting the zero pattern in the pre-array. The measurement-update for the estimated state vector \(X \) is

\[
\hat{X}_{i|i} = \hat{X}_{i|i-1} - K_i [C_i \hat{X}_{i|i-1} - Y_i]
\]

where \(K_i \) is the Kalman gain matrix, whilst the time-update for \(X \) is

\[
\hat{X}_{i+1|i} = A_i \hat{X}_{i|i} + D_i U_i
\]

where \(D_i U_i \) represents any deterministic control used. The relationship between the Kalman gain matrix \(K_i \) and \(G_i \) is given by

\[
A_i K_i = G_i \left(H_i^{1/2} \right)^{-1}
\]

The function returns the product of the matrices \(A_i \) and \(K_i \) represented as \(AK_i \), and the state covariance matrix \(P_{i|i-1} \) factorized as \(P_{i|i-1} = S_i S_i^T \) (see the g13 Chapter Introduction for more information concerning the covariance filter).
4 References

5 Arguments

1: \(n \) — Integer

On entry: the actual state dimension, \(n \), i.e., the order of the matrices \(S_i \) and \(A_i \).

Constraint: \(n \geq 1 \).

2: \(m \) — Integer

On entry: the actual input dimension, \(m \), i.e., the order of the matrix \(Q_i^{1/2} \).

Constraint: \(m \geq 1 \).

3: \(p \) — Integer

On entry: the actual output dimension, \(p \), i.e., the order of the matrix \(R_i^{1/2} \).

Constraint: \(p \geq 1 \).

4: \(s[n \times tds] \) — double

Input/Output

Note: the \((i, j)\)th element of the matrix \(S \) is stored in \(s[(i - 1) \times tds + j - 1] \).

On entry: the leading \(n \) by \(n \) lower triangular part of this array must contain \(S_i \), the left Cholesky factor of the state covariance matrix \(P_{i|i-1} \).

On exit: the leading \(n \) by \(n \) lower triangular part of this array contains \(S_{i+1} \), the left Cholesky factor of the state covariance matrix \(P_{i+1|i} \).

5: \(tds \) — Integer

Input

On entry: the stride separating matrix column elements in the array \(s \).

Constraint: \(tds \geq n \).

6: \(a[n \times tda] \) — const double

Input

Note: the \((i, j)\)th element of the matrix \(A \) is stored in \(a[(i - 1) \times tda + j - 1] \).

On entry: the leading \(n \) by \(n \) part of this array must contain \(A_i \), the state transition matrix of the discrete system.

7: \(tda \) — Integer

Input

On entry: the stride separating matrix column elements in the array \(a \).

Constraint: \(tda \geq n \).
Note: the \((i,j)\)th element of the matrix \(B\) is stored in \(b[(i-1) \times tdb + j - 1]\).

On entry: if \(q\) is not NULL then the leading \(n\) by \(m\) part of this array must contain the matrix \(B_i\), otherwise if \(q\) is NULL then the leading \(n\) by \(m\) part of the array must contain the matrix \(B_i Q_i^{1/2}\). \(B_i\) is the input weight matrix and \(Q_i\) is the noise covariance matrix.

9: \(tdb\) – Integer

On entry: the stride separating matrix column elements in the array \(b\).

Constraint: \(tdb \geq m\).

10: \(q[m \times tdq]\) – const double

Note: the \((i,j)\)th element of the matrix \(Q\) is stored in \(q[(i-1) \times tdq + j - 1]\).

On entry: if the noise covariance matrix is to be supplied separately from the input weight matrix then the leading \(m\) by \(m\) lower triangular part of this array must contain \(Q_i^{1/2}\), the left Cholesky factor of the input process noise covariance matrix. If the noise covariance matrix is to be input with the weight matrix as \(B_i Q_i^{1/2}\) then the array \(q\) must be set to NULL.

11: \(tdq\) – Integer

On entry: the stride separating matrix column elements in the array \(q\).

Constraint: \(tdq \geq m\) if \(q\) is defined.

12: \(c[p \times tdc]\) – const double

Note: the \((i,j)\)th element of the matrix \(C\) is stored in \(c[(i-1) \times tdc + j - 1]\).

On entry: the leading \(p\) by \(n\) part of this array must contain \(C_i\), the output weight matrix of the discrete system.

13: \(tdc\) – Integer

On entry: the stride separating matrix column elements in the array \(c\).

Constraint: \(tdc \geq n\).

14: \(r[p \times tdr]\) – const double

Note: the \((i,j)\)th element of the matrix \(R\) is stored in \(r[(i-1) \times tdr + j - 1]\).

On entry: the leading \(p\) by \(p\) lower triangular part of this array must contain \(R_i^{1/2}\), the left Cholesky factor of the measurement noise covariance matrix.

15: \(tdr\) – Integer

On entry: the stride separating matrix column elements in the array \(r\).

Constraint: \(tdr \geq p\).

16: \(k[n \times tdk]\) – double

Note: the \((i,j)\)th element of the matrix \(K\) is stored in \(k[(i-1) \times tdk + j - 1]\).

On exit: if \(k\) is not NULL then the leading \(n\) by \(p\) part of \(k\) contains \(AK_i\), the product of the Kalman filter gain matrix \(K_i\) with the state transition matrix \(A_i\). If \(AK_i\) is not required then \(k\) must be set to NULL.
17: \(\text{tdk} \) – Integer

\textit{Input}

On entry: the stride separating matrix column elements in the array \(k \).

Constraint: if \(k \) is not NULL, \(\text{tdk} \geq p \)

18: \(\text{h}[p \times \text{tdh}] \) – double

\textit{Output}

Note: the \((i, j)\)th element of the matrix \(H \) is stored in \(\text{h}[(i-1) \times \text{tdh} + j - 1] \).

On exit: if \(k \) is not NULL then the leading \(p \) by \(p \) lower triangular part of this array contains \(H^{1/2} \).
If \(k \) is NULL then \(h \) is not referenced and may be set to NULL.

19: \(\text{tdh} \) – Integer

\textit{Input}

On entry: the stride separating matrix column elements in the array \(h \).

Constraint: if both \(k \) and \(h \) are not NULL, \(\text{tdh} \geq p \)

20: \(\text{tol} \) – double

\textit{Input}

On entry: if both \(k \) and \(h \) are not NULL then \(\text{tol} \) is used to test for near singularity of the matrix \(H^{1/2} \). If you set \(\text{tol} \) to be less than \(p^2 \epsilon \) then the tolerance is taken as \(p^2 \epsilon \), where \(\epsilon \) is the machine precision. Otherwise, \(\text{tol} \) need not be set by you.

21: \(\text{fail} \) – NagError *

\textit{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

\textbf{NE_2_INT_ARG_LT}

On entry \(\text{tda} = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tda} \geq n \).
On entry \(\text{tdb} = \langle \text{value} \rangle \) while \(m = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdb} \geq m \).
On entry \(\text{tdc} = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdc} \geq n \).
On entry \(\text{tdh} = \langle \text{value} \rangle \) while \(p = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdh} \geq p \).
On entry \(\text{tdk} = \langle \text{value} \rangle \) while \(p = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdk} \geq p \).
On entry \(\text{tdq} = \langle \text{value} \rangle \) while \(m = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdq} \geq m \).
On entry \(\text{tdr} = \langle \text{value} \rangle \) while \(p = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tdr} \geq p \).
On entry, \(\text{tds} = \langle \text{value} \rangle \) while \(n = \langle \text{value} \rangle \). These arguments must satisfy \(\text{tds} \geq n \).

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.

\textbf{NE_INT_ARG_LT}

On entry, \(m = \langle \text{value} \rangle \).
Constraint: \(m \geq 1 \).
On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 1 \).
On entry, \(p = \langle \text{value} \rangle \).
Constraint: \(p \geq 1 \).

\textbf{NE_MAT_SINGULAR}

The matrix \(\sqrt{H} \) is singular.
Array h has null address.

7 Accuracy
The use of the square root algorithm improves the stability of the computations.

8 Parallelism and Performance
Not applicable.

9 Further Comments
The algorithm requires $\frac{2}{3}n^3 + n^2\left(\frac{3}{2}p + m\right) + n\left(4m^2 + p^2\right)$ operations and is backward stable (see Vanbegin et al. (1989)).

10 Example
For this function two examples are presented. There is a single example program for nag_kalman_sqrt_filt_cov_var (g13eac), with a main program and the code to solve the two example problems is given in the functions ex1 and ex2.

Example 1 (ex1)
To apply three iterations of the Kalman filter (in square root covariance form) to the system $A_i; B_i; C_i \left(\right)$. The same data is used for all three iterative steps.

Example 2 (ex2)
In the second example 2000 terms of an ARMA(1,1) time series (with $\sigma^2 = 1.0$, $\theta = 0.9$ and $\phi = 0.4$) are generated using the function nag_rand_arma (g05phc). The Kalman filter and optimization function nag_opt_nlp_solve (e04wdc) are then used to find the maximum likelihood estimate for the time series arguments θ and ϕ. The ARMA(1,1) time series is defined by

$$y_k = \phi y_{k-1} + \epsilon_k - \theta \epsilon_{k-1}$$

This has the following state space representation (Harvey and Phillips (1979))

$$x_k = \begin{pmatrix} \phi & 1 \\ 0 & -\theta \end{pmatrix} x_{k-1} + \begin{pmatrix} 1 \\ -\theta \end{pmatrix} \epsilon_k$$

$$y_k = \begin{pmatrix} 1 & 0 \end{pmatrix} x_k$$

where the state vector $x_k = \begin{pmatrix} y_k \\ -\theta \epsilon_k \end{pmatrix}$ and ϵ_k is uncorrelated white noise with zero mean and variance σ^2, i.e.,

$$E[\epsilon_k] = 0, E[\epsilon_k \epsilon_k] = \sigma^2, E[y_k \epsilon_k] = \sigma^2 \text{ and } E[\epsilon_k \epsilon_{k-1}] = 0.$$

Since $\sigma^2 = 1$ we arrive at the following Kalman Filter matrices

$$A_k = \begin{pmatrix} \phi & 1 \\ 0 & -\theta \end{pmatrix}, B_k = \begin{pmatrix} 1 \\ -\theta \end{pmatrix}$$

$$C_k = \begin{pmatrix} 1 & 0 \end{pmatrix}, Q_k = 0 \text{ and } R_k = 1.$$

The initial estimates for the state vector, $x_{1|0}$, and state covariance matrix, $P_{1|0}$, are:

$$x_{1|0} = E[x_k] = 0 \text{ and } P_{1|0} = E[x_k x_k^T] = \begin{pmatrix} E[y_k y_k] & -\theta E[y_k \epsilon_k] \\ -\theta E[y_k \epsilon_k] & \theta^2 E[\epsilon_k \epsilon_k] \end{pmatrix}.$$

Since $E[y_k y_k] = \gamma_0 = \frac{(1+\phi^2-2\phi\theta)\sigma^2}{(1-\rho^2)}$ (Wei (1990))
\[P_{1|0} = \begin{pmatrix} \gamma_0 & -\theta \\ -\theta & \theta^2 \end{pmatrix}. \]

Using \(P_{1|0} = S_{1|0} S_{1|0}^T \) gives an initial Cholesky ‘square root’ of
\[S_{1|0} = \begin{pmatrix} \sqrt{\gamma_0} & 0 \\ \sqrt{\frac{\theta}{\gamma_0}} & \sqrt{\frac{\gamma_0 - 1}{\gamma_0}} \end{pmatrix}. \]

10.1 Program Text

/* nag_kalman_sqrt_filt_cov_var (g13eac) Example Program. */
* Copyright 2014 Numerical Algorithms Group
* * Mark 4, 1996.
* Mark 5 revised, 1998.
* Mark 6 revised, 2000.
* Mark 7 revised, 2001.
* */

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagf06.h>
#include <nagg05.h>
#include <nagg13.h>
#include <nagx02.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL objfun(Integer n, const double theta_phi[], double *objf, double g[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
static int ex1(void);
static int ex2(void);

int main(void)
{
 /* Integer scalar and array declarations */
 Integer exit_status_ex1 = 0;
 Integer exit_status_ex2 = 0;

 printf("nag_kalman_sqrt_filt_cov_var (g13eac) Example Program Results\n\n");

 /* Run example 1 */
 exit_status_ex1 = ex1();

 /* Run example 2 */
 exit_status_ex2 = ex2();

 return (exit_status_ex1 == 0 && exit_status_ex2 == 0) ? 0 : 1;
}

/* Start of the first example ... */
define A(I, J) a[(I) *tda + J]
define B(I, J) b[(I) *tdb + J]
define C(I, J) c[(I) *tdc + J]
define K(I, J) k[(I) *tdk + J]
static int ex1()
{
 /* Integer scalar and array declarations */
 Integer exit_status = 0;
 Integer i, j, m, n, p, istep, tda, tdb, tdc, tdk, tdq, tdr, tds, tdh;

 /* Double scalar and array declarations */
 double tol;
 double *a = 0, *b = 0, *c = 0, *k = 0, *q = 0, *r = 0, *s = 0, *h = 0;

 /* NAG structures */
 NagError fail;

 /* Initialise the error structure */
 INIT_FAIL(fail);

 printf("Example 1\n");

 /* Skip the heading in the data file */
 #ifdef _WIN32
 scanf_s("%*[\n");
 #else
 scanf("%*[\n");
 #endif

 /* Get the problem size */
 #ifdef _WIN32
 scanf_s("%NAG_IFMT"%NAG_IFMT"%NAG_IFMT"%lf", &n, &m, &p, &tol);
 #else
 scanf("%NAG_IFMT"%NAG_IFMT"%NAG_IFMT"%lf", &n, &m, &p, &tol);
 #endif
 if (n < 1 | | m < 1 | | p < 1)
 {
 printf("Invalid n or m or p.\n");
 exit_status = 1;
 goto END;
 }
 tda = tdc = tds = n;
 tdb = tdq = m;
 tdk = tdr = tdh = p;

 /* Allocate arrays */
 if (! (a = NAG_ALLOC(n*tda, double)) | |
 ! (b = NAG_ALLOC(n*tdb, double)) | |
 ! (c = NAG_ALLOC(p*tdc, double)) | |
 ! (k = NAG_ALLOC(n*tdk, double)) | |
 ! (q = NAG_ALLOC(m*tdq, double)) | |
 ! (r = NAG_ALLOC(p*tdr, double)) | |
 ! (s = NAG_ALLOC(n*tds, double)) | |
 ! (h = NAG_ALLOC(n*tdh, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* Read data */
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < n; ++j)
 {
 if (!_WIN32)
 {
 scanf("%lf", &S(i, j));
 }
 else
 {
 scanf("%lf", &S(i, j));
 }
 printf("%lf", &S(i, j));
 }
 }
}

Mark 25
for (j = 0; j < n; ++j)
#ifdef _WIN32
 scanf_s("%lf", &A(i, j));
#else
 scanf("%lf", &A(i, j));
#endif
for (i = 0; i < n; ++i)
 for (j = 0; j < m; ++j)
#ifdef _WIN32
 scanf_s("%lf", &B(i, j));
#else
 scanf("%lf", &B(i, j));
#endif
if (q)
{
 for (i = 0; i < m; ++i)
 for (j = 0; j < m; ++j)
#ifdef _WIN32
 scanf_s("%lf", &Q(i, j));
#else
 scanf("%lf", &Q(i, j));
#endif
}
for (i = 0; i < p; ++i)
 for (j = 0; j < n; ++j)
#ifdef _WIN32
 scanf_s("%lf", &C(i, j));
#else
 scanf("%lf", &C(i, j));
#endif
 for (i = 0; i < p; ++i)
 for (j = 0; j < p; ++j)
#ifdef _WIN32
 scanf_s("%lf", &R(i, j));
#else
 scanf("%lf", &R(i, j));
#endif
/* Perform three iterations of the Kalman filter recursion */
for (istep = 1; istep <= 3; ++istep)
{
 /* Run the kalman filter */
 nag_kalman_sqrt_filt_cov_var(n, m, p, s, tds, a, tda, b, tdb, q, tdq,
 c, tdc, r, tdr, k, tdk, h, tdh, tol, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_kalman_sqrt_filt_cov_var (g13eac).\n"
 "%s\n", fail.message);
 exit_status = 1;
 goto END;
 }
}
/* Print the results */
printf("\nThe square root of the state covariance matrix is\n\n");
for (i = 0; i < n; ++i)
{
 for (j = 0; j < n; ++j)
 printf("%8.4f ", S(i, j));
 printf("\n");
}
if (k)
{
 printf("\nThe matrix AK (the product of the Kalman gain\n");
 printf("matrix with the state transition matrix) is\n\n");
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < p; ++j)
 printf("%8.4f ", K(i, j));
 printf("\n");
 }
}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(k);
NAG_FREE(q);
NAG_FREE(r);
NAG_FREE(s);
NAG_FREE(h);

return exit_status;
}

return exit_status;

/* ... end of the first example */

/* Start of the second example ... */
#define NY 2000

/* This illustrates the use of the kalman filter to estimate the parameters of an ARMA(1,1) time series model.
Note : theta_phi[0] contains theta (moving average coefficient), and theta_phi[1] contains phi (autoregressive coefficient)
*/
static int ex2(void)
{
 /* Integer scalar and array declarations */
 Integer exit_status = 0;
 Integer n, lr;
 Integer lstate;
 Integer *state = 0;

 /* Double scalar and array declarations */
 double sy[NY];
 double *theta_phi = 0, *g = 0, *bl = 0, *bu = 0, *r = 0;
 double objf, var;

 /* NAG structures and data types */
 Nag_BoundType bound;
 Nag_Comm comm;
 Nag_E04_Opt options;
 NagError fail;
 Nag_ModeRNG mode;

 /* Choose the base generator */
 Nag_BaseRNG genid = Nag_Basic;
 Integer subid = 0;

 /* Set the seed */
 Integer seed[] = {1762543};
 Integer lseed = 1;

 /* Set the autoregressive coefficients for the (randomly generated) time series */
 Integer ip = 1;
 double sphi[] = {0.4};

 /* Set the moving average coefficients for the (randomly generated) time series */
 Integer iq = 1;
 double stheta[] = {0.9};

 /* Number of terms in the (randomly generated) time series */
 Integer nterms = NY;

 /* Mean and variance of the (randomly generated) time series */
 double mean = 0.0, vara = 1.0;

 /* Initialise the error structure */
 INIT_FAIL(fail);
Example 2

/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_init_repeatable (g05kfc).
 fail.message);
 exit_status = 1;
 goto END;
}

/* Calculate the size of the reference vector */
lr = (ip > iq + 1) ? ip : iq + 1;
lr += ip+iq+6;

/* Allocate arrays */
if (!((state = NAG_ALLOC(lstate, Integer)) ||
 (r = NAG_ALLOC(lr, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Initialise the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_init_repeatable (g05kfc).
 fail.message);
 exit_status = 1;
 goto END;
}

/* Generate a time series with nterms terms */
mode = Nag_InitializeAndGenerate;
nag_rand_arma(mode, nterms, mean, ip, sphi, iq, stheta, vara, r, lr, state,
 &var, sy, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_rand_arma (g05phc).
 fail.message);
 exit_status = 1;
 goto END;
}

/* Number of parameters to estimate */
n = ip + iq;

/* Allocate arrays */
if (!((theta_phi = NAG_ALLOC(n, double)) ||
 (g = NAG_ALLOC(n, double)) ||
 (bl = NAG_ALLOC(n, double)) ||
 (bu = NAG_ALLOC(n, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Make an initial guess of the parameters */
theta_phi[0] = 0.5;
theta_phi[1] = 0.5;

/* Set the bounds */
bound = Nag_Bounds;
b1[0] = -1.0;
bu[0] = 1.0;
b1[1] = -1.0;
bu[1] = 1.0;
comm.user = sy[0];

/* nag_opt_init (e04xxc).
 * Initialization function for option setting
 */
#define _WIN32
strcpy_s(options.outfile, _countof(options.outfile), "stdout");
#else
strcpy(options.outfile, "stdout");
#endif
options.print_level = Nag_NoPrint;
options.list = Nag_FALSE;

/* nag_opt_bounds_no_deriv (e04jbc).
 * Bound constrained nonlinear minimization (no derivatives
 * required)
 */
#define _WIN32
strcpy_s(options.outfile, _countof(options.outfile), "stdout");
#else
strcpy(options.outfile, "stdout");
#endif
options.print_level = Nag_NoPrint;
options.list = Nag_FALSE;

if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN)
{
 printf("Error from nag_opt_bounds_no_deriv (e04jbc).
 %s
", fail.message);
 exit_status = 1;
 goto END;
}

/* nag_opt_free (e04xzc).
 * Memory freeing function for use with option setting
 */
#define _WIN32
strcpy_s(options.outfile, _countof(options.outfile), "stdout");
#else
strcpy(options.outfile, "stdout");
#endif
options.print_level = Nag_NoPrint;
options.list = Nag_FALSE;

if (fail.code != NE_NOERROR)
{
 printf("Error from nag_opt_free (e04xzc).
 %s
", fail.message);
 exit_status = 1;
 goto END;
}

/* Display the results */
printf("The estimates are : theta = %7.3f, phi = %7.3f \n",
 theta_phi[0], theta_phi[1]);

END:
NAG_FREE(state);
NAG_FREE(theta_phi);
NAG_FREE(g);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(r);

return exit_status;

/* Define objective function used in the non-linear optimisation routine ... */
static void NAG_CALL objfun(Integer n, const double theta_phi[], double *objf,
 double g[], Nag_Comm *comm)
{
 /* Routine to evaluate objective function. */
 Integer ione = 1, itwo = 2, k, ml = 1, n1 = 2, nsteps = NY, nsum = 0, pl = 1;
 double a[2][2], ak[2][1], b[2][1], c[1][2], h[1][1], hs, k11, logdet = 0.0;
 double phi, q[1][1], r[1][1];
 double s[2][2], ss = 0.0, temp1, temp2, theta, tol = 0.0;
 double v, xp[2], *y;
 NagError fail;

 /* Initialise the error structure */
 INIT_FAIL(fail);
y = comm->user;
/* The expectation of the mean of an ARMA(1,1) is 0.0 */
xp[0] = 0.0;
xp[1] = 0.0;
q[0][0] = 1.0;
c[0][0] = 1.0;
c[0][1] = 0.0;
/* There is no measurement noise */
r[0][0] = 0.0;
theta = theta_phi[0];
phi = theta_phi[1];
b[0][0] = 1.0;
b[1][0] = -theta;
a[0][0] = phi;
a[1][0] = 0.0;
a[0][1] = 1.0;
a[1][1] = 0.0;
/* set value for cholesky factor of state covariance matrix */
temp1 = 1.0 + (theta * theta) - (2.0 * theta * phi);
temp2 = 1.0 - (phi * phi);
k11 = temp1/temp2;
s[0][0] = sqrt(k11);
s[0][1] = 0.0;
s[1][0] = -theta /s[0][0];
s[1][1] = theta * sqrt(1.0 - (1.0/k11));
/* iterate kalman filter for number of observations */
for (k = 1; k <= nsteps; ++k) {
 /* nag_kalman_sqrt_filt_cov_var (g13eac).
 * One iteration step of the time-varying Kalman filter
 * recursion using the square root covariance implementation */
 nag_kalman_sqrt_filt_cov_var(n1, m1, p1, &s[0][0], itwo, &a[0][0], itwo,
 &b[0][0], ione, &q[0][0], ione, &c[0][0], itwo,
 &r[0][0], ione, &ak[0][0], ione, &h[0][0],
 ione, tol, &fail);
 if (fail.code != NE_NOERROR) {
 printf("Error from nag_kalman_sqrt_filt_cov_var (g13eac).\n%s\n",
 fail.message);
 *objf = 0.0;
 goto END;
 }
 v = y[k-1] - c[0][0]*xp[0];
 hs = h[0][0] * h[0][0];
 logdet = logdet + log(hs);
 ss = ss + (v * v/ hs);
 nsum = nsum + 1;
 xp[0] = a[0][0]* xp[0] + a[0][1] * xp[1] + ak[0][0] * v;
 xp[1] = ak[1][0] * v;
}
*objf = nsum * log(ss/nsum) + logdet;
END:
/* ... end of the objective function definition */
/* ... end of the second example */

10.2 Program Data

None.
10.3 Program Results

nag_kalman_sqrt_filt_cov_var (g13eac) Example Program Results

Example 1

The square root of the state covariance matrix is

```
-1.2936  0.0000  0.0000  0.0000
-1.1382 -0.2579  0.0000  0.0000
-0.9622 -0.1529  0.2974  0.0000
-1.3076  0.0936  0.4508 -0.4897
```

The matrix AK (the product of the Kalman gain matrix with the state transition matrix) is

```
0.3638  0.9469
0.3532  0.8179
0.2471  0.5542
0.1982  0.6471
```

Example 2

The estimates are : theta = 0.898, phi = 0.406