1 Purpose

nag_tsa_varma_forecast (g13djc) computes forecasts of a multivariate time series. It is assumed that a vector ARMA model has already been fitted to the appropriately differenced/transformed time series using nag_tsa_varma_estimate (g13ddc). The standard deviations of the forecast errors are also returned. A reference vector is set up so that, should future series values become available, the forecasts and their standard errors may be updated by calling nag_tsa_varma_update (g13dkc).

2 Specification

#include <nag.h>
#include <nagl3.h>

void nag_tsa_varma_forecast (Integer k, Integer n, const double z[],
Integer kmax, const Integer tr[], const Integer id[],
const double delta[], Integer ip, Integer iq, Nag_IncludefMean mean,
const double par[], Integer lpar, double qq[], const double v[],
Integer lmax, double predz[], double sefz[], double ref[], Integer lref,
NagError *fail)

3 Description

Let the vector \(Z_t = (z_{1t}, z_{2t}, \ldots, z_{kt})^T \), for \(t = 1, 2, \ldots, n \), denote a \(k \)-dimensional time series for which forecasts of \(Z_{n+1}, Z_{n+2}, \ldots, Z_{n+l_{max}} \) are required. Let \(W_t = (w_{1t}, w_{2t}, \ldots, w_{kt})^T \) be defined as follows:

\[
 w_{it} = \delta_i(B)z_{it}^*, \quad i = 1, 2, \ldots, k,
\]

where \(\delta_i(B) \) is the differencing operator applied to the \(i \)th series and where \(z_{it}^* \) is equal to either \(z_{it}, \sqrt{z_{it}} \) or \(\log_e(z_{it}) \) depending on whether or not a transformation was required to stabilize the variance before fitting the model.

If the order of differencing required for the \(i \)th series is \(d_i \), then the differencing operator for the \(i \)th series is defined by \(\delta_i(B) = 1 - \delta_{i1}B - \delta_{i2}B^2 - \cdots - \delta_{id_i}B^{d_i} \), where \(B \) is the backward shift operator; that is, \(BZ_t = Z_{t-1} \). The differencing parameters \(\delta_{ij} \), for \(i = 1, 2, \ldots, k \) and \(j = 1, 2, \ldots, d_i \), must be supplied by you. If the \(i \)th series does not require differencing, then \(d_i = 0 \).

\(W_t \) is assumed to follow a multivariate ARMA model of the form:

\[
 W_t - \mu = \phi_1(W_{t-1} - \mu) + \phi_2(W_{t-2} - \mu) + \cdots + \phi_p(W_{t-p} - \mu) + \epsilon_t - \theta_1\epsilon_{t-1} - \cdots - \theta_q\epsilon_{t-q}, \tag{1}
\]

where \(\epsilon_t = (\epsilon_{1t}, \epsilon_{2t}, \ldots, \epsilon_{kt})^T \), for \(t = 1, 2, \ldots, n \), is a vector of \(k \) residual series assumed to be Normally distributed with zero mean and positive definite covariance matrix \(\Sigma \). The components of \(\epsilon_t \) are assumed to be uncorrelated at non-simultaneous lags. The \(\phi_i \) and \(\theta_j \) are \(k \) by \(k \) matrices of parameters. The matrices \(\phi_i \), for \(i = 1, 2, \ldots, p \), are the autoregressive (AR) parameter matrices, and the matrices \(\theta_i \), for \(i = 1, 2, \ldots, q \), the moving average (MA) parameter matrices. The parameters in the model are thus the \(p \) (\(k \) by \(k \)) \(\phi \)-matrices, the \(q \) (\(k \) by \(k \)) \(\theta \)-matrices, the mean vector \(\mu \) and the residual error covariance matrix \(\Sigma \). The ARMA model (1) must be both stationary and invertible; see nag_tsa_arma_roots (g13dxc) for a method of checking these conditions.

The ARMA model (1) may be rewritten as

\[
 \phi(B)(\delta(B)Z_t^* - \mu) = \theta(B)\epsilon_t,
\]

where \(\phi(B) \) and \(\theta(B) \) are the autoregressive and moving average polynomials and \(\delta(B) \) denotes the \(k \) by \(k \) diagonal matrix whose \(i \)th diagonal elements is \(\delta_i(B) \) and \(Z_t^* = (z_{1t}^*, z_{2t}^*, \ldots, z_{kt}^*)^T \).
This may be rewritten as

\[\phi(B) \delta(B) Z_t^* = \phi(B) \mu + \theta(B) \epsilon_t \]

or

\[Z_t^* = \tau + \psi(B) \epsilon_t = \tau + \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \cdots \]

where \(\psi(B) = \delta^{-1}(B) \phi^{-1}(B) \theta(B) \) and \(\tau = \delta^{-1}(B) \mu \) is a vector of length \(k \).

Forecasts are computed using a multivariate version of the procedure described in Box and Jenkins (1976). If \(\hat{Z}_n^*(l) \) denotes the forecast of \(Z_n^* + l \), then \(\hat{Z}_n^*(l) \) is taken to be that linear function of \(Z_n^*, Z_{n-1}^*, \ldots \) which minimizes the elements of \(E \{ \epsilon_n(l) \epsilon_n^T(l) \} \) where \(\epsilon_n(l) = Z_{n+l}^* - \hat{Z}_n^*(l) \) is the forecast error. \(\hat{Z}_n^*(l) \) is referred to as the linear minimum mean square error forecast of \(Z_n^* + l \).

The linear predictor which minimizes the mean square error may be expressed as

\[\hat{Z}_n^*(l) = \tau + \psi(\epsilon_n + \psi_{l+1} \epsilon_{n-1} + \psi_{l+2} \epsilon_{n-2} + \cdots). \]

The forecast error at \(t \) for lead \(l \) is then

\[\epsilon_n(l) = Z_{n+l}^* - \hat{Z}_n^*(l) = \epsilon_{n+l} + \psi_1 \epsilon_{n+l-1} + \psi_2 \epsilon_{n+l-2} + \cdots + \psi_{l-1} \epsilon_{n+1}. \]

Let \(d = \max(d_i) \), for \(i = 1, 2, \ldots, k \). Unless \(q = 0 \) the function requires estimates of \(\epsilon_t \), for \(t = d + 1, \ldots, n \), which are obtainable from nag_tsa_varma_estimate (g13dcd). The terms \(\epsilon_t \) are assumed to be zero, for \(t = n + 1, \ldots, n + l_{\text{max}} \). You may use nag_tsa_varma_update (g13dkc) to update these \(l_{\text{max}} \) forecasts should further observations, \(Z_{n+1}, Z_{n+2}, \ldots \), become available. Note that when \(l_{\text{max}} \) or more further observations are available then nag_tsa_varma_forecast (g13djc) must be used to produce new forecasts for \(Z_{n+l_{\text{max}}+1}, Z_{n+l_{\text{max}}+2}, \ldots \), should they be required.

When a transformation has been used the forecasts and their standard errors are suitably modified to give results in terms of the original series, \(Z_t \); see Granger and Newbold (1976).

4 References

5 Arguments

The quantities \(k, n, k_{\text{max}}, ip, iq, \text{par}, npar, qq \) and \(v \) from nag_tsa_varma_estimate (g13dcd) are suitable for input to nag_tsa_varma_forecast (g13djc).

1: \(k \) – Integer

Input

On entry: \(k \), the dimension of the multivariate time series.

Constraint: \(k \geq 1 \).

2: \(n \) – Integer

Input

On entry: \(n \), the number of observations in the series, \(Z_t \), prior to differencing.

Constraint: \(n \geq 3 \).

The total number of observations must exceed the total number of parameters in the model; that is

- if \(\text{mean} = \text{Nag Mean Zero} \), \(n \times k > (ip + iq) \times k \times k + k \times (k + 1)/2 \);
- if \(\text{mean} = \text{Nag Mean Include} \), \(n \times k > (ip + iq) \times k \times k + k + k \times (k + 1)/2 \),

(see the arguments \(ip, iq \) and \(\text{mean} \)).
3: \(z[kmax \times n] \) – const double

Input

On entry: \(z[(t-1) \times kmax + i - 1] \) must contain the \(i \)th series at time \(t \), for \(t = 1, 2, \ldots, n \) and \(i = 1, 2, \ldots, k \).

4: \(kmax \) – Integer

Input

On entry: the stride separating row elements in the two-dimensional data stored in the arrays \(z, \delta, qq, v, predz, sefz \).

Constraint: \(kmax \geq k \).

5: \(tr[k] \) – const Integer

Input

On entry: \(tr[i-1] \) indicates whether the \(i \)th series is to be transformed, for \(i = 1, 2, \ldots, k \).

- \(tr[i-1] = -1 \)
 A square root transformation is used.

- \(tr[i-1] = 0 \)
 No transformation is used.

- \(tr[i-1] = 1 \)
 A log transformation is used.

Constraint: \(tr[i-1] = -1, 0 \) or \(1 \), for \(i = 1, 2, \ldots, k \).

6: \(id[k] \) – const Integer

Input

On entry: \(id[i-1] \) must specify, \(d_i \), the order of differencing required for the \(i \)th series.

Constraint: \(0 \leq id[i-1] < n - \max(ip, iq) \), for \(i = 1, 2, \ldots, k \).

7: \(\delta[dim] \) – const double

Input

Note: the dimension, \(dim \), of the array \(\delta \) must be at least \(kmax \times d \), where \(d = \max(id[i-1]) \).

On entry: if \(id[i-1] > 0 \), then \(\delta[j-1 \times kmax + i - 1] \) must be set equal to \(\delta_{ij} \), for \(j = 1, 2, \ldots, d_i \) and \(i = 1, 2, \ldots, k \).

If \(d = 0 \), \(\delta \) is not referenced.

8: \(ip \) – Integer

Input

On entry: \(p \), the number of AR parameter matrices.

Constraint: \(ip \geq 0 \).

9: \(iq \) – Integer

Input

On entry: \(q \), the number of MA parameter matrices.

Constraint: \(iq \geq 0 \).

10: \(mean \) – Nag_IncludeMean

Input

On entry: \(mean = Nag_MeanInclude \), if components of \(\mu \) have been estimated and \(mean = Nag_MeanZero \), if all elements of \(\mu \) are to be taken as zero.

Constraint: \(mean = Nag_MeanInclude \) or \(Nag_MeanZero \).

11: \(par[lpar] \) – const double

Input

On entry: must contain the parameter estimates read in row by row in the order \(\phi_1, \phi_2, \ldots, \phi_p, \theta_1, \theta_2, \ldots, \theta_q, \mu \).

Thus,
if \(\text{ip} > 0 \), \(\text{par}[(l - 1) \times k \times k + (i - 1) \times k + j - 1] \) must be set equal to an estimate of the \((i,j)\)th element of \(\phi_t \), for \(l = 1,2,\ldots,p \), \(i = 1,2,\ldots,k \) and \(j = 1,2,\ldots,k \); if \(\text{iq} > 0 \), \(\text{par}[p \times k \times k + (l - 1) \times k \times k + (i - 1) \times k + j - 1] \) must be set equal to an estimate of the \((i,j)\)th element of \(\theta_t \), for \(l = 1,2,\ldots,q \), \(i = 1,2,\ldots,k \) and \(j = 1,2,\ldots,k \); if \(\text{mean} = \text{Nag_MeanInclude} \), \(\text{par}[(p + q) \times k \times k + i - 1] \) must be set equal to an estimate of the \(i \)th component of \(\mu \), for \(i = 1,2,\ldots,k \).

Constraint: the first \(\text{ip} \times k \times k \) elements of \(\text{par} \) must satisfy the stationarity condition and the next \(\text{iq} \times k \times k \) elements of \(\text{par} \) must satisfy the invertibility condition.

12: \text{ip} – Integer
Input

On entry: the dimension of the array \(\text{par} \).

Constraints:
- if \(\text{mean} = \text{Nag_MeanZero} \), \(\text{ip} \geq \max(1,(\text{ip} + \text{iq}) \times k \times k) \);
- if \(\text{mean} = \text{Nag_MeanInclude} \), \(\text{ip} \geq (\text{ip} + \text{iq}) \times k \times k + k \).

13: \text{iq}[\text{kmax} \times k] – double
Input/Output

On entry: \(\text{iq}[(j - 1) \times \text{kmax} + i - 1] \) must contain an estimate of the \((i,j)\)th element of \(\Sigma \). The lower triangle only is needed.

Constraint: \(\text{iq} \) must be positive definite.

On exit: if \(\text{fail.code} = \text{NE_EIGENVALUES}, \text{NE_G13D_AR}, \text{NE_G13D_MA}, \text{NE_NEARLY_POS_DEF}, \text{NE_NOT_POS_DEF}, \text{NE_OVERFLOW_LIKELY} \) or \(\text{NE_TRANSFORMATION} \), then the upper triangle is set equal to the lower triangle.

14: \text{v}[\text{dim}] – const double
Input

Note: the dimension, \(\text{dim} \), of the array \(\text{v} \) must be at least \(\text{kmax} \times (n - d) \), where \(d = \max(\text{id}[i - 1]) \).

On entry: \(\text{v}[(t - 1) \times \text{kmax} + i - 1] \) must contain an estimate of the \(i \)th component of \(\epsilon_{t+d} \), for \(i = 1,2,\ldots,k \) and \(t = 1,2,\ldots,n - d \).

If \(q = 0 \), \(\text{v} \) is not used.

15: \text{lmax} – Integer
Input

On entry: the number, \(\text{lmax} \), of forecasts required.

Constraint: \(\text{lmax} \geq 1 \).

16: \text{predz}[\text{kmax} \times \text{lmax}] – double
Output

On exit: \(\text{predz}[(l - 1) \times \text{kmax} + i - 1] \) contains the forecast of \(z_{(n+l)} \), for \(i = 1,2,\ldots,k \) and \(l = 1,2,\ldots,\text{lmax} \).

17: \text{sefz}[\text{kmax} \times \text{lmax}] – double
Output

On exit: \(\text{sefz}[(l - 1) \times \text{kmax} + i - 1] \) contains an estimate of the standard error of the forecast of \(z_{i,n+l} \), for \(i = 1,2,\ldots,k \) and \(l = 1,2,\ldots,\text{lmax} \).

18: \text{ref}[\text{ref}] – double
Output

On exit: the reference vector which may be used to update forecasts using \text{g13dgc}. The first \((\text{lmax} - 1) \times k \times k \) elements contain the \(\psi \) weight matrices, \(\psi_1,\psi_2,\ldots,\psi_{\text{lmax} - 1} \). The next \(k \times \text{lmax} \) elements contain the forecasts of the transformed series \(Z_{n+1}^*,Z_{n+2}^*,\ldots,Z_{n+\text{lmax}}^* \) and the next \(k \times \text{lmax} \) contain the variances of the forecasts of the transformed variables. The last \(k \) elements are used to store the transformations for the series.
19: lref – Integer

On entry: the dimension of the array ref.
Constraint: \(lref \geq (lmax - 1) \times k \times k + 2 \times k \times lmax + k \).

20: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_EIGENVALUES

An excessive number of iterations were needed by nag_tsa_arma_roots (g13dxc) to evaluate the eigenvalues of the matrices used to test for stationarity and invertibility.

NE_G13D_AR

On entry, the AR parameter matrices are outside the stationarity region.

NE_G13D_MA

On entry, the MA parameter matrices are outside the invertibility region.

NE_INT

On entry, \(ip = \langle \text{value} \rangle \).
Constraint: \(ip \geq 0 \).

On entry, \(iq = \langle \text{value} \rangle \).
Constraint: \(iq \geq 0 \).

On entry, \(k = \langle \text{value} \rangle \).
Constraint: \(k \geq 1 \).

On entry, \(lmax = \langle \text{value} \rangle \).
Constraint: \(lmax \geq 1 \).

On entry, \(lpar \) is too small: \(lpar = \langle \text{value} \rangle \) but must be at least \(\langle \text{value} \rangle \).

On entry, \(lref \) is too small: \(lref = \langle \text{value} \rangle \) but must be at least \(\langle \text{value} \rangle \).

On entry, \(n = \langle \text{value} \rangle \).
Constraint: \(n \geq 3 \).

NE_INT_2

On entry, \(kmax = \langle \text{value} \rangle \) and \(k = \langle \text{value} \rangle \).
Constraint: \(kmax \geq k \).

NE_INT_ARRAY

On entry, \(\text{id}[i-1] = \langle \text{value} \rangle \) and \(n - \max(ip, iq) = \langle \text{value} \rangle \).
Constraint: \(0 \leq \text{id}[i-1] < n - \max(ip, iq) \).

On entry, \(\text{tr}[i] = \langle \text{value} \rangle \).
Constraint: \(\text{tr}[i] = -1, 0 \) or \(1 \).
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NEARLY_POS_DEF
The covariance matrix may be nearly non positive definite.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_NOT_POS_DEF
On entry, the covariance matrix \(Q \) is not positive definite.

NE_OBSERV_LT_P
On entry, the total number of observations is less than the total number of parameters (including the covariance matrix). Number of observations = \(\langle \text{value} \rangle \) and number of parameters = \(\langle \text{value} \rangle \).

NE_OVERFLOW_LIKELY
The forecasts will overflow if computed.

NE_TRANSFORMATION
On entry, one (or more) of the transformations requested is invalid.

7 Accuracy
The matrix computations are believed to be stable.

8 Parallelism and Performance

\(\text{nag_tsa_varma_forecast (g13djc)} \) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

\(\text{nag_tsa_varma_forecast (g13djc)} \) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
The same differencing operator does not have to be applied to all the series. For example, suppose we have \(k = 2 \), and wish to apply the second order differencing operator \(\nabla^2 \) to the first series and the first-order differencing operator \(\nabla \) to the second series:

\[
\begin{align*}
 w_{1t} &= \nabla^2 z_{1t} = (1 - B)^2 z_{1t} = (1 - 2B + B^2)Z_{1t}, \\
 w_{2t} &= \nabla z_{2t} = (1 - B)Z_{2t}.
\end{align*}
\]

Then \(d_1 = 2, d_2 = 1, d = \max(d_1, d_2) = 2 \), and

\[
\delta = \begin{bmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}.
\]
Note: although differencing may already have been applied prior to the model fitting stage, the differencing parameters supplied in delta are part of the model definition and are still required by this function to produce the forecasts.

nag_tsa_varma_forecast (g13djc) should not be used when the moving average parameters lie close to the boundary of the invertibility region. The function does test for both invertibility and stationarity but if in doubt, you may use nag_tsa_arma_roots (g13dxc), before calling this function, to check that the VARMA model being used is invertible.

On a successful exit, the quantities k, lmax, kmax, ref and lref will be suitable for input to nag_tsa_varma_update (g13dkc).

10 Example

This example computes forecasts of the next five values in two series each of length 48. No transformation is to be used and no differencing is to be applied to either of the series. nag_tsa_varma_estimate (g13ddc) is first called to fit an AR(1) model to the series. The mean vector \(\mu \) is to be estimated and \(\phi_1(2,1) \) constrained to be zero.

10.1 Program Text

/* nag_tsa_varma_forecast (g13djc) Example Program. *
 * Copyright 2014 Numerical Algorithms Group.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 /* Scalars */
 double cgetol, rlogl;
 Integer exit_status = 0, i, i2, idmax, idmin, ip, iprint, iq, ishow;
 Integer j, l2, lref, lmax, loop, maxcal, n, nd, niter, k, l, npar;
 Integer kmax, icm;
 /* Arrays */
 double *cm = 0, *delta = 0, *g = 0, *par = 0, *predz = 0, *qq = 0;
 double *ref = 0, *sefz = 0, *v = 0, *w = 0, *z = 0;
 Integer *id = 0, *tr = 0;
 char nag_enum_arg[40];
 /* Nag types */
 Nag_Boolean *parhld = 0;
 Nag_Boolean exact;
 Nag_IncludeMean mean;
 NagError fail;

 #define DELTA(I, J) delta[(J - 1) * kmax + I - 1]
 #define PREDZ(I, J) predz[(J - 1) * kmax + I - 1]
 #define QQ(I, J) qq[(J - 1) * kmax + I - 1]
 #define SEFZ(I, J) sefz[(J - 1) * kmax + I - 1]
 #define Z(I, J) z[(J - 1) * kmax + I - 1]

 INIT_FAIL(fail);

 printf("nag_tsa_varma_forecast (g13djc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 #endif

 /* Read data from data file */
 /* ... */

 /* Call nag_tsa_varma_forecast (g13djc) */
 /* ... */

 /* Print results */
 printf("nag_tsa_varma_forecast (g13djc) Example Program Results\n\n");

 return exit_status;
}
#ifdef _WIN32
 scanf_s("%NAG_IFMT"%NAG_IFMT"%NAG_IFMT"%NAG_IFMT" %39s %NAG_IFMT"%*[\n]",
 &k, &n, &ip, &iq, nag_enum_arg, _countof(nag_enum_arg), &lmax);
#else
 scanf("%NAG_IFMT"%NAG_IFMT"%NAG_IFMT"%NAG_IFMT" %39s %NAG_IFMT"%*[\n]",
 &k, &n, &ip, &iq, nag_enum_arg, &lmax);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);

npar = (ip + iq) * k * k;
if (mean == Nag_MeanInclude)
{
npar += k;
}
if (k > 0 && n >= 1 && npar >= 1 && lmax >= 1)
{
kmax = k;
 icm = npar;
 lref = (lmax - 1) * k * k + 2 * k * lmax + k;
 /* Allocate memory */
 if (!(tr = NAG_ALLOC(k, Integer)) ||
 !(cm = NAG_ALLOC(npar * icm, double)) ||
 !(g = NAG_ALLOC(npar, double)) ||
 !(par = NAG_ALLOC(npar, double)) ||
 !(predz = NAG_ALLOC(lmax * kmax, double)) ||
 !(q = NAG_ALLOC(k * kmax, double)) ||
 !(id = NAG_ALLOC(lref, double)) ||
 !(sefz = NAG_ALLOC(lmax * kmax, double)) ||
 !(v = NAG_ALLOC(n * kmax, double)) ||
 !(w = NAG_ALLOC(n * kmax, double)) ||
 !(z = NAG_ALLOC(n * kmax, double)) ||
 !(id = NAG_ALLOC(k, Integer)) ||
 !(parhld = NAG_ALLOC(npar, Nag_Boolean)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
}
else
{
 printf("Invalid parameters\n");
 exit_status = -1;
 goto END;
}

for (i = 1; i <= k; ++i)
{
 #ifdef _WIN32
 scanf_s("%NAG_IFMT", &id[i-1]);
 #else
 scanf("%NAG_IFMT", &id[i-1]);
 #endif
 #ifdef _WIN32
 scanf("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 idmin = 0;
 idmax = 0;
 for (i = 1; i <= k; ++i)
 {
 idmin = MIN(id[i-1], idmin);
 idmax = MAX(id[i-1], idmax);
 }
if (idmin >= 0)
{
 if (!(delta = NAG_ALLOC(k * idmax, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 for (i = 1; i <= k; ++i)
 {
 for (j = 1; j <= n; ++j)
 {
 #ifdef _WIN32
 scanf_s("%lf ", &Z(i, j));
 #else
 scanf("%lf ", &Z(i, j));
 #endif
 }
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 #endif
 for (i = 1; i <= k; ++i)
 {
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT" ", &tr[i-1]);
 #else
 scanf("%"NAG_IFMT" ", &tr[i-1]);
 #endif
 }
 #ifdef _WIN32
 scanf_s("%*[\n"]);
 #else
 scanf("%*[\n"]);
 #endif
 if (idmax > 0)
 {
 for (i = 1; i <= k; ++i)
 {
 for (j = 1; j <= id[i-1]; ++j)
 {
 #ifdef _WIN32
 scanf_s("%lf", &DELTA(i, j));
 #else
 scanf("%lf", &DELTA(i, j));
 #endif
 }
 #ifdef _WIN32
 scanf_s("%*[\n"]");
 #else
 scanf("%*[\n"]");
 #endif
 }
 }
 }
}/* nag_tsa_multi_diff (g13dlc).
 * Multivariate time series, differences and/or transforms */
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_tsa_multi_diff (g13dlc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
for (i = 1; i <= npar; ++i)
{
 par[i-1] = 0.0;
 parhld[i-1] = Nag_FALSE;
}
for (i = 1; i <= k; ++i)
{
 for (j = 1; j <= i; ++j)
 {
 QQ(i, j) = 0.0;
 }
}
parhld[2] = Nag_TRUE;
exact = Nag_TRUE;
/* ** Set iprint < 0 for no monitoring */
iprint = -1;
cgetol = 1.0e-4;
maxcal = npar * 40 * (npar + 5);
ishow = 0;
/* nag_tsa_varma_estimate (g13ddc).
 * Multivariate time series, estimation of VARMA model
*/
nag_tsa_varma_estimate(k, nd, ip, iq, mean, par, npar, qq, kmax, w,
parhld, exact, iprint, cgetol, maxcal, ishow, 0, &niter, &rlogl, v, g, cm, &fail);
if (fail.code != NE_NOERROR)
{
 printf("\n nag_tsa_varma_estimate (g13ddc) message: %s\n\n",
fail.message);
 exit_status = 1;
 goto END;
}
/* nag_tsa_varma_forecast (g13djc).
 * Multivariate time series, forecasts and their standard
 * errors
*/
nag_tsa_varma_forecast(k, n, z, kmax, tr, id, delta, ip, iq, mean,
par, npar, qq, v, lmax, predz, sefz, ref,
ret, &fail);
if (fail.code != NE_NOERROR)
{
 printf("\n nag_tsa_varma_forecast (g13djc) message: %s\n\n",
fail.message);
 exit_status = 1;
 goto END;
}
printf("\n");
printf("Forecast summary table\n");
printf("Forecast origin is set at t = %4"NAG_IFMT"\n\n", n);
loop = lmax / 5;
if (lmax % 5 != 0)
{
 ++loop;
}
for (j = 1; j <= loop; ++j)
{
 i2 = (j - 1) * 5;
 l2 = MIN(i2 + 5, lmax);
 printf("%s%13s", "Lead Time", "");
 for (i = i2 + 1; i <= l2; ++i)
{
 printf("\%10"NAG_IFMT"%s", i,
 (i % 5 == 0 || i == l2?"\n":" "));
}
printf("\n");
for (i = 1; i <= k; ++i)
{
 printf("%-7s%2"NAG_IFMT"%-15s", "Series", i, ": Forecast");
 for (l = i2 + 1; l <= l2; ++l)
 {
 printf("%-10.2f%s", PREDZ(i, l),
 (l % 5 == 0 || l == l2?"\n":" "));
 }
 printf("%9s%-18s", ": Standard Error ");
 for (l = i2 + 1; l <= l2; ++l)
 {
 printf("%-7.2f%s", SEFZ(i, l),
 (l % 5 == 0 || l == l2?"\n":" "));
 }
 printf("\n");
}

END:
NAG_FREE(tr);
NAG_FREE(cm);
NAG_FREE(delta);
NAG_FREE(g);
NAG_FREE(par);
NAG_FREE(predz);
NAG_FREE(qq);
NAG_FREE(ref);
NAG_FREE(sefz);
NAG_FREE(v);
NAG_FREE(w);
NAG_FREE(z);
NAG_FREE(id);
NAG_FREE(parhld);

return exit_status;
}

10.2 Program Data

nag_tsa_varma_forecast (g13djc) Example Program Data
2 48 1 0 Nag_MeanInclude 5 : k, n, ip, iq, mean, lmax
0 0 : id[i-1], i=1,k
-1.490 1.170 0.850 -0.350 0.240 2.440 2.580
2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
4.080 5.060 4.940 6.650 7.940 10.760 11.890 5.850
0 0 : tr[i-1], i=1,k
10.3 Program Results

nag_tsa_varma_forecast (g13djc) Example Program Results

Forecast summary table

Forecast origin is set at $t = 48$

<table>
<thead>
<tr>
<th>Lead Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 1: Forecast</td>
<td>7.82</td>
<td>7.28</td>
<td>6.77</td>
<td>6.33</td>
<td>5.95</td>
</tr>
<tr>
<td>: Standard Error</td>
<td>1.72</td>
<td>2.23</td>
<td>2.51</td>
<td>2.68</td>
<td>2.79</td>
</tr>
<tr>
<td>Series 2: Forecast</td>
<td>10.31</td>
<td>9.25</td>
<td>8.65</td>
<td>8.30</td>
<td>8.10</td>
</tr>
<tr>
<td>: Standard Error</td>
<td>2.32</td>
<td>2.68</td>
<td>2.78</td>
<td>2.82</td>
<td>2.83</td>
</tr>
</tbody>
</table>