NAG Library Function Document

nag_tsa_multi_auto_corr_part (g13dbc)

1 Purpose
nag_tsa_multi_auto_corr_part (g13dbc) calculates the multivariate partial autocorrelation function of a multivariate time series.

2 Specification
#include <nag.h>
#include <nagg13.h>

void nag_tsa_multi_auto_corr_part (const double c0[], const double c[], Integer ns, Integer nl, Integer nk, double p[], double *v0, double v[],
double d[], double db[], double w[], double wb[], Integer *nvp,
NagError *fail)

3 Description
The input is a set of lagged autocovariance matrices \(C_0, C_1, C_2, \ldots, C_m \). These will generally be sample values such as are obtained from a multivariate time series using nag_tsa_multi_cross_corr (g13dmc).

The main calculation is the recursive determination of the coefficients in the finite lag (forward) prediction equation

\[
 x_t = \Phi_{1,j} x_{t-1} + \cdots + \Phi_{l,j} x_{t-l} + e_{l,t}
\]

and the associated backward prediction equation

\[
 x_{t-l-1} = \Psi_{1,j} x_{t-l} + \cdots + \Psi_{l,j} x_{t-l-1} + f_{l,t}
\]

together with the covariance matrices \(D_l \) of \(e_{l,t} \) and \(G_l \) of \(f_{l,t} \).

The recursive cycle, by which the order of the prediction equation is extended from \(l \) to \(l+1 \), is to calculate

\[
 M_{l+1} = C_T^{l+1} - \Phi_{1,l} C_T^{l} - \cdots - \Phi_{l,l} C_T^{1}
\]

then \(\Phi_{l+1,j+1} = M_{l+1} D_l^{-1} \), \(\Psi_{l+1,l+1} = M_{l+1} G_l^{-1} \)

from which

\[
 \Phi_{l+1,j} = \Phi_{l,j} - \Phi_{l+1,l+1} \Psi_{l+1,l+1-j}, \quad j = 1, 2, \ldots, l
\]

and

\[
 \Psi_{l+1,j} = \Psi_{l,j} - \Psi_{l+1,l+1} \Psi_{l+1,l+1-j}, \quad j = 1, 2, \ldots, l.
\]

Finally, \(D_{l+1} = D_l - M_{l+1} \Phi_{l+1,l+1} \) and \(G_{l+1} = G_l - M_{l+1} \Psi_{l+1,l+1} \).

(Here \(T \) denotes the transpose of a matrix.)

The cycle is initialized by taking (for \(l = 0 \))

\[
 D_0 = G_0 = C_0.
\]

In the step from \(l = 0 \) to 1, the above equations contain redundant terms and simplify. Thus (1) becomes \(M_1 = C_T^1 \) and neither (2) or (3) are needed.

Quantities useful in assessing the effectiveness of the prediction equation are generalized variance ratios

\[
 v_l = \frac{\det D_l}{\det C_0}, \quad l = 1, 2, \ldots
\]

Mark 25
and multiple squared partial autocorrelations
\[p_l^2 = 1 - \frac{v_l}{v_{l-1}}. \]

4 References

5 Arguments

1: \(\text{c0}[\text{ns} \times \text{ns}] \) – const double
 \[\text{Input} \]
 On entry: contains the zero lag cross-covariances between the \(\text{ns} \) series as returned by nag_tsa_multi_cross_corr (g13dmc). (\(\text{c0} \) is assumed to be symmetric, upper triangle only is used.)

2: \(\text{c}[\text{ns} \times \text{ns} \times \text{nl}] \) – const double
 \[\text{Input} \]
 On entry: the \(k \) cross-covariances as returned by nag_tsa_multi_cross_corr (g13dmc).

3: \(\text{ns} \) – Integer
 \[\text{Input} \]
 On entry: \(k \), the number of time series whose cross-covariances are supplied in \(\text{c} \) and \(\text{c0} \).
 Constraint: \(\text{ns} \geq 1 \).

4: \(\text{nl} \) – Integer
 \[\text{Input} \]
 On entry: \(m \), the maximum lag for which cross-covariances are supplied in \(\text{c} \).
 Constraint: \(\text{nl} \geq 1 \).

5: \(\text{nk} \) – Integer
 \[\text{Input} \]
 On entry: the number of lags to which partial auto-correlations are to be calculated.
 Constraint: \(1 \leq \text{nk} \leq \text{nl} \).

6: \(\text{p}[\text{nk}] \) – double
 \[\text{Output} \]
 On exit: the multiple squared partial autocorrelations from lags 1 to \(\text{nvp} \); that is, \(p[l-1] \) contains \(p_l^2 \), for \(l = 1,2,\ldots,\text{nvp} \). For lags \(\text{nvp} + 1 \) to \(\text{nk} \) the elements of \(\text{p} \) are set to zero.

7: \(\text{v0} \) – double
 \[\text{Output} \]
 On exit: the lag zero prediction error variance (equal to the determinant of \(\text{c0} \)).

8: \(\text{v}[\text{nk}] \) – double
 \[\text{Output} \]
 On exit: the prediction error variance ratios from lags 1 to \(\text{nvp} \); that is, \(v[l-1] \) contains \(v_l \), for \(l = 1,2,\ldots,\text{nvp} \). For lags \(\text{nvp} + 1 \) to \(\text{nk} \) the elements of \(\text{v} \) are set to zero.

9: \(\text{d}[\text{ns} \times \text{ns} \times \text{nk}] \) – double
 \[\text{Output} \]
 On exit: the prediction error variance matrices at lags 1 to \(\text{nvp} \), \(d[(l-1)k^2 + (j-1)k + i - 1] \) contains the \((i,j)\)th prediction error covariance of series \(i \) and series \(j \) at lag \(l \). Series \(j \) leads series \(i \).

10: \(\text{db}[\text{ns} \times \text{ns}] \) – double
 \[\text{Output} \]
 On exit: the backward prediction error variance matrix at lag \(\text{nvp} \), \(\text{db}[(j-1)k + i - 1] \) contains the backward prediction error covariance of series \(i \) and series \(j \).
11: \(\mathbf{w}[\mathbf{n} \times \mathbf{n} \times \mathbf{n}] \) – double
On exit: the prediction coefficient matrices at lags 1 to \(\mathbf{nvp} \), \(\mathbf{w}[(l-1)k^2 + (j-1)k + i - 1] \) contains the \(j \)th prediction coefficient of series \(i \) at lag \(l \) (i.e., the \((i,j)\)th element of \(\Phi_{L,l} \)).

12: \(\mathbf{wb}[\mathbf{n} \times \mathbf{n} \times \mathbf{n}] \) – double
On exit: the backward prediction coefficient matrices at lags 1 to \(\mathbf{nvp} \), \(\mathbf{wb}[(l-1)k^2 + (j-1) + i - 1] \) contains the \(j \)th backward prediction coefficient of series \(i \) at lag \(l \) (i.e., the \((i,j)\)th element of \(\Psi_{L,l} \)).

13: \(\mathbf{nvp} \) – Integer *
On exit: the maximum lag, \(L \), for which calculation of \(\mathbf{p}, \mathbf{v}, \mathbf{d}, \mathbf{db}, \mathbf{w} \) and \(\mathbf{wb} \) was successful. If the function completes successfully \(\mathbf{nvp} \) will equal \(\mathbf{nk} \).

14: \(\mathbf{fail} \) – NagError *
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT
On entry, \(\mathbf{nk} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{nk} \geq 1 \).

On entry, \(\mathbf{nl} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{nl} \geq 1 \).

On entry, \(\mathbf{ns} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{ns} \geq 1 \).

NE_INT_2
On entry, \(\mathbf{nk} = \langle \text{value} \rangle \) and \(\mathbf{nl} = \langle \text{value} \rangle \).
Constraint: \(\mathbf{nk} \leq \mathbf{nl} \).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_POS_DEF
At lag \(\mathbf{nvp} + 1 \leq \mathbf{nk} \), \(\mathbf{d} \) is not positive definite, \(\mathbf{nvp} = \langle \text{value} \rangle \) and \(\mathbf{nk} = \langle \text{value} \rangle \).
\(\mathbf{c0} \) is not positive definite.
7 Accuracy

The conditioning of the problem depends on the prediction error variance ratios. Very small values of these may indicate loss of accuracy in the computations.

8 Parallelism and Performance

nag_tsa_multi_auto_corr_part (g13dbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_tsa_multi_auto_corr_part (g13dbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken by nag_tsa_multi_auto_corr_part (g13dbc) is roughly proportional to $nk^2 \times ns^3$.

If sample autocorrelation matrices are used as input, then the output will be relevant to the original series scaled by their standard deviations. If these autocorrelation matrices are produced by nag_tsa_multi_cross_corr (g13dmc), you must replace the diagonal elements of C_0 (otherwise used to hold the series variances) by 1.

10 Example

This example reads the autocovariance matrices for four series from lag 0 to 5. It calls nag_tsa_multi_auto_corr_part (g13dbc) to calculate the multivariate partial autocorrelation function and other related matrices of statistics up to lag 3. It prints the results.

10.1 Program Text

/* nag_tsa_multi_auto_corr_part (g13dbc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 7, 2002. */
/* Mark 7b revised, 2004. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 /* Scalars */
 double v0;
 Integer exit_status, i1, i, j, j1, k, nk, nl, ns, nvp,
 pdc0, pdbb;
 NagError fail;

 /* Arrays */
 double *c0 = 0, *c = 0, *d = 0, *db = 0, *p = 0, *v = 0, *w = 0,
 *wb = 0;

 #define C(I, J, K) c[((K-1)*ns + (J-1))*ns + I - 1]
 #define D(I, J, K) d[((K-1)*ns + (J-1))*ns + I - 1]
 #define W(I, J, K) w[((K-1)*ns + (J-1))*ns + I - 1]
 #define WB(I, J, K) wb[((K-1)*ns + (J-1))*ns + I - 1]
#ifdef NAG_COLUMN_MAJOR
#define C0(I, J) c0[(J-1)*pdc0 + I - 1]
#define DB(I, J) db[(J-1)*pddb + I - 1]
#else
#define C0(I, J) c0[(I-1)*pdc0 + J - 1]
#define DB(I, J) db[(I-1)*pddb + J - 1]
#endif

INIT_FAIL(fail);
exit_status = 0;

printf("nag_tsa_multi_auto_corr_part (g13dbc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("%*[\n "]");
#else
scanf("%*[\n "]");
#endif

/* Read series length, and numbers of lags */
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n "]", &ns, &nl, &nk);
#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[\n "]", &ns, &nl, &nk);
#endif
if (ns > 0 && nl > 0 && nk > 0)
{
 /* Allocate arrays */
 if (!((c0 = NAG_ALLOC(ns * ns, double)) ||
 (c = NAG_ALLOC(ns * ns * nl, double)) ||
 (d = NAG_ALLOC(ns * ns * nk, double)) ||
 (db = NAG_ALLOC(ns * ns, double)) ||
 (p = NAG_ALLOC(nk, double)) ||
 (v = NAG_ALLOC(nk, double)) ||
 (w = NAG_ALLOC(ns * ns * nk, double)) ||
 (wb = NAG_ALLOC(ns * ns * nk, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 pdc0 = ns;
 pddb = ns;

 /* Read autocovariances */
 for (i = 1; i <= ns; ++i)
 {
 for (j = 1; j <= ns; ++j)
 #ifdef _WIN32
 scanf_s("%lf", &C0(i, j));
 #else
 scanf("%lf", &C0(i, j));
 #endif
 }
#endif
#endif
 for (k = 1; k <= nl; ++k)
 {
 for (i = 1; i <= ns; ++i)
 {
 for (j = 1; j <= ns; ++j)
 #ifdef _WIN32
 scanf_s("%*[\n "]");
 #else
 scanf("%*[\n "]");
 #endif
 }
 }
}
```c
scanf_s("%lf", &C(i, j, k));
#else
    scanf("%lf", &C(i, j, k));
#endif
}
#endif
#else
    scanf("%*[\n"]");
#endif

/* Call routine to calculate multivariate partial
   autocorrelation function */
/* nag_tsa_multi_auto_corr_part (g13dbc).
   * Multivariate time series, multiple squared partial
   * autocorrelations
   */
   nag_tsa_multi_auto_corr_part(c0, c, ns, nl, nk, p, &v0, v, d, db, w, wb,
                                &nvp, &fail);
if (fail.code != NE_NOERROR)
{
    printf(
        "Error from nag_tsa_multi_auto_corr_part (g13dbc).\n%s\n",
        fail.message);
    exit_status = 1;
    goto END;
}
if (fail.code == NE_NOERROR || fail.code == NE_POS_DEF)
{
    printf("\n");
    printf("Number of valid parameters =%10"NAG_IFMT"\n", nvp);
    printf("\n");
    printf("Multivariate partial autocorrelations\n");
    for (il = 1; il <= nk; ++il)
    {
        printf("%13.5f", p[il-1]);
        if (il % 5 == 0 || il == nk)
            printf("\n");
    }
    printf("\n");
    printf("Zero lag predictor error variance determinant\n");
    printf("followed by error variance ratios\n");
    printf("%12.5f", v0);
    for (il = 1; il <= nk; ++il)
    {
        printf("%13.5f", v[il-1]);
        if (il % 5 == 0 || il == nk)
            printf("\n");
    }
    printf("\n");
    printf("Prediction error variances\n");
    printf("\n");
    for (k = 1; k <= nk; ++k)
    {
        printf("Lag =%5"NAG_IFMT"\n", k);
        for (i = 1; i <= ns; ++i)
        {
            for (j1 = 1; j1 <= ns; ++j1)
            {
                printf("%13.5f", D(i, j1, k));
                if (j1 % 5 == 0 || j1 == ns)
                    printf("\n");
            }
        }
    }
}
```

printf("Last backward prediction error variances\n");
printf("\n");
printf("Lag =%5"NAG_IFMT"\n", nvp);
for (i = 1; i <= ns; ++i)
{
 for (j1 = 1; j1 <= ns; ++j1)
 {
 printf("%13.5f", DB(i, j1));
 if (j1 % 5 == 0 || j1 == ns)
 printf("\n");
 }
 printf("\n");
}
printf("\n");
printf("Prediction coefficients\n");
printf("\n");
for (k = 1; k <= nk; ++k)
{
 printf("Lag =%5"NAG_IFMT"\n", k);
 for (i = 1; i <= ns; ++i)
 {
 for (j1 = 1; j1 <= ns; ++j1)
 {
 printf("%13.5f", W(i, j1, k));
 if (j1 % 5 == 0 || j1 == ns)
 printf("\n");
 }
 printf("\n");
 }
}
printf("\n");
printf("Backward prediction coefficients\n");
printf("\n");
for (k = 1; k <= nk; ++k)
{
 printf("Lag =%5"NAG_IFMT"\n", k);
 for (i = 1; i <= ns; ++i)
 {
 for (j1 = 1; j1 <= ns; ++j1)
 {
 printf("%13.5f", WB(i, j1, k));
 if (j1 % 5 == 0 || j1 == ns)
 printf("\n");
 }
 printf("\n");
 }
}
}
}
10.2 Program Data

```
4 5 3
.10900E-01 -.77917E-02 .13004E-02 .12654E-02
-.77917E-02 .57040E-01 .24180E-02 .14409E-01
.13004E-02 .24180E-02 .43960E-01 -.21421E-01
-.77917E-02 .24180E-02 .43960E-01 -.21421E-01
```

10.3 Program Results

```
Number of valid parameters = 3

Multivariate partial autocorrelations
0.64498  0.92669  0.84300

Zero lag predictor error variance determinant
0.00000  0.35502  0.02603  0.00409

Prediction error variances
Lag = 1
  0.00811 -0.00511  0.00159  -0.00029
  -0.00511  0.04089  0.00757  0.01843
  0.00159  0.00757  0.03834  -0.01894
  -0.00029  0.01843  -0.01894  0.06760

Lag = 2
  0.00354 -0.00087  -0.00075  -0.00105
  -0.00087  0.01946  0.00535  0.00566
  -0.00075  0.00535  0.01900  -0.01071
  -0.00105  0.00566  -0.01071  0.04058

Lag = 3
  0.00301 -0.00087  -0.00054  0.00065
  -0.00087  0.01824  0.00872  0.00247
  -0.00054  0.00872  0.00935  -0.00216
  0.00065  0.00247  -0.00216  0.02254

Last backward prediction error variances
Lag = 3
  0.00331 -0.00392  -0.00106  0.000592
  -0.00392  0.01890  0.00348  -0.00330
  -0.00106  0.00348  0.01003  -0.01054
  0.000592 -0.00330  -0.01054  0.03336
```
Prediction coefficients

Lag = 1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8186</td>
<td>0.2339</td>
<td>-0.1709</td>
<td>0.0925</td>
<td></td>
</tr>
<tr>
<td>0.0673</td>
<td>-0.4872</td>
<td>-0.1406</td>
<td>0.0429</td>
<td></td>
</tr>
<tr>
<td>0.1503</td>
<td>0.1192</td>
<td>-0.3672</td>
<td>-0.4209</td>
<td></td>
</tr>
<tr>
<td>-0.7097</td>
<td>0.0299</td>
<td>0.5977</td>
<td>0.3461</td>
<td></td>
</tr>
</tbody>
</table>

Lag = 2

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3405</td>
<td>-0.1337</td>
<td>0.4061</td>
<td>-0.0218</td>
<td></td>
</tr>
<tr>
<td>-1.2757</td>
<td>-0.1359</td>
<td>-0.6577</td>
<td>-0.1127</td>
<td></td>
</tr>
<tr>
<td>-0.4544</td>
<td>0.1938</td>
<td>0.6342</td>
<td>0.3392</td>
<td></td>
</tr>
<tr>
<td>-0.4324</td>
<td>-0.5484</td>
<td>-0.6289</td>
<td>0.1667</td>
<td></td>
</tr>
</tbody>
</table>

Lag = 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1644</td>
<td>0.1386</td>
<td>0.0129</td>
<td>0.0346</td>
<td></td>
</tr>
<tr>
<td>0.3929</td>
<td>0.0741</td>
<td>0.1592</td>
<td>0.0067</td>
<td></td>
</tr>
<tr>
<td>-1.2924</td>
<td>-0.2449</td>
<td>0.3023</td>
<td>0.3944</td>
<td></td>
</tr>
<tr>
<td>0.8976</td>
<td>-0.3904</td>
<td>0.2515</td>
<td>-0.2830</td>
<td></td>
</tr>
</tbody>
</table>

Backward prediction coefficients

Lag = 1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4154</td>
<td>0.0614</td>
<td>0.1531</td>
<td>0.0508</td>
<td></td>
</tr>
<tr>
<td>0.1237</td>
<td>-0.2647</td>
<td>-0.2272</td>
<td>0.4850</td>
<td></td>
</tr>
<tr>
<td>-0.8693</td>
<td>-0.4737</td>
<td>0.3792</td>
<td>0.1381</td>
<td></td>
</tr>
<tr>
<td>1.3078</td>
<td>-0.0918</td>
<td>-1.4539</td>
<td>-0.2196</td>
<td></td>
</tr>
</tbody>
</table>

Lag = 2

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0674</td>
<td>-0.1226</td>
<td>-0.1367</td>
<td>-0.0973</td>
<td></td>
</tr>
<tr>
<td>-1.2480</td>
<td>0.0309</td>
<td>0.5171</td>
<td>-0.2892</td>
<td></td>
</tr>
<tr>
<td>0.9804</td>
<td>-0.2019</td>
<td>0.1630</td>
<td>-0.1086</td>
<td></td>
</tr>
<tr>
<td>-1.6839</td>
<td>-0.7459</td>
<td>0.5290</td>
<td>0.4158</td>
<td></td>
</tr>
</tbody>
</table>

Lag = 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0379</td>
<td>0.1049</td>
<td>-0.2163</td>
<td>0.0801</td>
<td></td>
</tr>
<tr>
<td>0.7539</td>
<td>0.2260</td>
<td>-0.2566</td>
<td>-0.4745</td>
<td></td>
</tr>
<tr>
<td>-0.0033</td>
<td>0.0563</td>
<td>-0.0881</td>
<td>0.1272</td>
<td></td>
</tr>
<tr>
<td>0.5502</td>
<td>-0.4123</td>
<td>0.7164</td>
<td>-0.1456</td>
<td></td>
</tr>
</tbody>
</table>

Mark 25