NAG Library Function Document

nag_tsa_cross_corr (g13bcc)

1 Purpose

nag_tsa_cross_corr (g13bcc) calculates cross-correlations between two time series.

2 Specification

#include <nag.h>
#include <nagg13.h>

void nag_tsa_cross_corr (const double x[], const double y[], Integer nxy,
 Integer nl, double *s, double *r0, double r[], double *stat,
 NagError *fail)

3 Description

Given two series \(x_1, x_2, \ldots, x_n\) and \(y_1, y_2, \ldots, y_n\) the function calculates the cross-correlations between \(x_t\) and lagged values of \(y_t\):

\[r_{xy}(l) = \frac{\sum_{t=1}^{n-l} (x_t - \bar{x})(y_{t+l} - \bar{y})}{ns_x s_y}, \quad l = 0, 1, \ldots, L \]

where

\[\bar{x} = \frac{\sum_{t=1}^{n} x_t}{n} \]

\[s_x^2 = \frac{\sum_{t=1}^{n} (x_t - \bar{x})^2}{n} \]

and similarly for \(y\).

The ratio of standard deviations \(s_y/s_x\) is also returned, and a portmanteau statistic is calculated:

\[\text{stat} = n \sum_{l=1}^{L} r_{xy}(l)^2. \]

Provided \(n\) is large, \(L\) much less than \(n\), and both \(x_t, y_t\) are samples of series whose true autocorrelation functions are zero, then, under the null hypothesis that the true cross-correlations between the series are zero, \(\text{stat}\) has a \(\chi^2\)-distribution with \(L\) degrees of freedom. Values of \(\text{stat}\) in the upper tail of this distribution provide evidence against the null hypothesis.

4 References

Holden–Day
5 Arguments

1: \(x[\text{nxy}] \) – const double
 \(\text{Input} \)
 \(\text{On entry: the } n \text{ values of the } x \text{ series.} \)

2: \(y[\text{nxy}] \) – const double
 \(\text{Input} \)
 \(\text{On entry: the } n \text{ values of the } y \text{ series.} \)

3: \(\text{nxy} \) – Integer
 \(\text{Input} \)
 \(\text{On entry: } n, \text{ the length of the time series.} \)
 \(\text{Constraint: } \text{nxy} \geq 2. \)

4: \(\text{nl} \) – Integer
 \(\text{Input} \)
 \(\text{On entry: } L, \text{ the maximum lag for calculating cross-correlations.} \)
 \(\text{Constraint: } 1 \leq \text{nl} < \text{nxy}. \)

5: \(\text{s} \) – double *
 \(\text{Output} \)
 \(\text{On exit: the ratio of the standard deviation of the } y \text{ series to the standard deviation of the } x \text{ series, } s_y/s_x. \)

6: \(\text{r0} \) – double *
 \(\text{Output} \)
 \(\text{On exit: the cross-correlation between the } x \text{ and } y \text{ series at lag zero.} \)

7: \(\text{r[\text{nl}]} \) – double
 \(\text{Output} \)
 \(\text{On exit: } r[l-1] \text{ contains the cross-correlations between the } x \text{ and } y \text{ series at lags } L, r_{xy}(l), \text{ for } l = 1,2,\ldots ,L. \)

8: \(\text{stat} \) – double *
 \(\text{Output} \)
 \(\text{On exit: the statistic for testing for absence of cross-correlation.} \)

9: \(\text{fail} \) – NagError *
 \(\text{Input/Output} \)
 \(\text{The NAG error argument (see Section 3.6 in the Essential Introduction).} \)

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

NE_INT
On entry, \(\text{nl} = \langle \text{value} \rangle . \)
Constraint: \(\text{nl} \geq 1. \)
On entry, \(\text{nxy} = \langle \text{value} \rangle . \)
Constraint: \(\text{nxy} > 1. \)
NE_INT_2
On entry, nl ≥ nxy: nl = \langle value\rangle and nxy = \langle value\rangle.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_ZERO_VARIANCE
One or both of the \(x \) and \(y \) series have zero variance.

7 Accuracy
All computations are believed to be stable.

8 Parallelism and Performance
nag_tsa_cross_corr (g13bcc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_tsa_cross_corr (g13bcc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users’ Note for your implementation for any additional implementation-specific information.

9 Further Comments
If \(n < 100 \), or \(L < 10\log(n) \) then the autocorrelations are calculated directly and the time taken by nag_tsa_cross_corr (g13bcc) is approximately proportional to \(nL \), otherwise the autocorrelations are calculated by utilizing fast Fourier transforms (FFTs) and the time taken is approximately proportional to \(n\log(n) \). If FFTs are used then nag_tsa_cross_corr (g13bcc) internally allocates approximately \(6n \) real elements.

10 Example
This example reads two time series of length 20. It calculates and prints the cross-correlations up to lag 15 for the first series leading the second series and then for the second series leading the first series.

10.1 Program Text
/* nag_tsa_cross_corr (g13bcc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 7, 2002.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
```c
#include <naggl3.h>

int main(void)
{
    /* Scalars */
    double r0xy, r0yx, statxy, statyx, sxy, syx;
    Integer exit_status, i, nl, nxy;
    NagError fail;

    /* Arrays */
    double *rxy = 0, *ryx = 0, *x = 0, *y = 0;
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_tsa_cross_corr (g13bcc) Example Program Results\n");

    /* Skip heading in data file */
    #ifdef _WIN32
        scanf_s("%*[\n] ");
    #else
        scanf("%*[\n] ");
    #endif

    /* Read series length and number of lags */
    #ifdef _WIN32
        scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &nxy, &nl);
    #else
        scanf("%"NAG_IFMT"%"NAG_IFMT"%*[\n] ", &nxy, &nl);
    #endif

    /* Allocate memory */
    if (!(rxy = NAG_ALLOC(nl, double)) ||
        !(ryx = NAG_ALLOC(nl, double)) ||
        !(x = NAG_ALLOC(nxy, double)) ||
        !(y = NAG_ALLOC(nxy, double)))
    { printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }

    /* Read series */
    for (i = 1; i <= nxy; ++i)
        #ifdef _WIN32
            scanf_s("%lf", &x[i-1]);
        #else
            scanf("%lf", &x[i-1]);
        #endif
        #ifdef _WIN32
            scanf_s("%*[\n] ");
        #else
            scanf("%*[\n] ");
        #endif
        #ifdef _WIN32
            scanf_s("%lf", &y[i-1]);
        #else
            scanf("%lf", &y[i-1]);
        #endif
        #ifdef _WIN32
            scanf_s("%*[\n] ");
        #else
            scanf("%*[\n] ");
        #endif

    /* Call routine to calculate cross correlations between X and Y */
    /* nag_tsa_cross_corr (g13bcc). */
    /* Multivariate time series, cross-correlations */
}
```
```
/*
 nag_tsa_cross_corr(x, y, nxy, nl, &sxy, &r0xy, rxy, &statxy, &fail);
 if (fail.code != NE_NOERROR)
 {   
   printf("Error from nag_tsa_cross_corr (g13bcc), 1st call.\n", fail.message);
   exit_status = 1;
   goto END;
 }

/* Call routine to calculate cross correlations between Y and X */
/* nag_tsa_cross_corr (g13bcc), see above. */

nag_tsa_cross_corr(y, x, nxy, nl, &syx, &r0yx, ryx, &statyx, &fail);
if (fail.code != NE_NOERROR)
{
   printf("Error from nag_tsa_cross_corr (g13bcc), 2nd call.\n", fail.message);
   exit_status = 1;
   goto END;
}

printf("\n");
printf("\n");
printf("\n");
printf("%10.4f%15.4f\n", sxy, syx);
printf("%10.4f%15.4f\n", r0xy, r0yx);
for (i = 1; i <= nl; ++i)
   printf("%4"NAG_IFMT"%10.4f%15.4f\n", i, rxy[i-1], ryx[i-1]);
printf("\n");
printf("\n");
printf("\n");
printf("%10.4f%15.4f\n", statxy, statyx);

END:
NAG_FREE(rxy);
NAG_FREE(ryx);
NAG_FREE(x);
NAG_FREE(y);
return exit_status;
}

10.2 Program Data
nag_tsa_cross_corr (g13bcc) Example Program Data
   20 15
   0.02 0.05 0.08 0.03 -0.05 0.11 -0.01 -0.08 -0.08 -0.11
   -0.18 -0.19 -0.09 0.03 0.10 0.15 -0.14 0.07 0.09 0.16
   3.18 3.21 3.26 3.25 3.08 3.01 3.06 3.17 3.12 3.04
   3.26 3.45 3.33 3.70 3.31 3.81 3.33 2.96 3.28 3.10

10.3 Program Results
nag_tsa_cross_corr (g13bcc) Example Program Results
   Between Between
   X and Y Y and X

   Standard deviation ratio 2.0053 0.4987
   Cross correlation at lag
   0 0.0568 0.0568
   1 0.0438 -0.0151
   2 -0.3762 0.3955
   3 -0.4864 0.3417
   4 -0.6294 0.5486
```
<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>-0.3871</th>
<th>0.2291</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-0.1690</td>
<td>0.3190</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.0678</td>
<td>0.1980</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0962</td>
<td>0.0438</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0788</td>
<td>-0.1428</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2910</td>
<td>-0.1376</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0950</td>
<td>-0.0387</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0547</td>
<td>-0.0380</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.1855</td>
<td>-0.1551</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.0243</td>
<td>-0.1536</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.0034</td>
<td>-0.0696</td>
<td></td>
</tr>
</tbody>
</table>

Test statistic 22.1269 17.2917