1 Purpose

nag_tsa_resid_corr (g13asc) is a diagnostic checking function suitable for use after fitting a Box–Jenkins ARMA model to a univariate time series using nag_tsa_multi_inp_model_estim (g13bec). The residual autocorrelation function is returned along with an estimate of its asymptotic standard errors and correlations. Also, nag_tsa_resid_corr (g13asc) calculates the Box–Ljung portmanteau statistic and its significance level for testing model adequacy.

2 Specification

```c
#include <nag.h>
#include <nagg13.h>

void nag_tsa_resid_corr (Nag_ArimaOrder *arimav, Integer n, const double v[],
    Integer m, const double par[], Integer narma, double r[], double rc[],
    Integer tdrc, double *chi, Integer *df, double *siglev, NagError *fail)
```

3 Description

Consider the univariate multiplicative autoregressive-moving average model

\[\phi(B)\Phi(B^s)(W_t - \mu) = \theta(B)\Theta(B^s)\epsilon_t \]

(1)

where \(W_t \), for \(t = 1,2,\ldots,n \), denotes a time series and \(\epsilon_t \), for \(t = 1,2,\ldots,n \), is a residual series assumed to be Normally distributed with zero mean and variance \(\sigma^2 > 0 \). The \(\epsilon_t \)'s are also assumed to be uncorrelated. Here \(\mu \) is the overall mean term, \(s \) is the seasonal period and \(B \) is the backward shift operator such that \(BW_t = W_{t-s} \). The polynomials in (1) are defined as follows:

\[\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p \]

is the non-seasonal autoregressive (AR) operator;

\[\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \cdots - \theta_q B^q \]

is the non-seasonal moving average (MA) operator;

\[\Phi(B^s) = 1 - \Phi_1 B^s - \Phi_2 B^{2s} - \cdots - \Phi_p B^{ps} \]

is the seasonal AR operator; and

\[\Theta(B^s) = 1 - \Theta_1 B^s - \Theta_2 B^{2s} - \cdots - \Theta_Q B^{qs} \]

is the seasonal MA operator. The model (1) is assumed to be stationary, that is the zeros of \(\phi(B) \) and \(\Phi(B^s) \) are assumed to lie outside the unit circle. The model (1) is also assumed to be invertible, that is the zeros of \(\theta(B) \) and \(\Theta(B^s) \) are assumed to lie outside the unit circle. When both \(\Phi(B^s) \) and \(\Theta(B^s) \) are absent from the model, that is when \(P = Q = 0 \), then the model is said to be non-seasonal.

The estimated residual autocorrelation coefficient at lag \(l \), \(\hat{r}_l \), is computed as:

\[\hat{r}_l = \frac{\sum_{t=l+1}^{n} (\hat{\epsilon}_{t-l} - \bar{\epsilon})(\hat{\epsilon}_t - \bar{\epsilon})}{\sum_{t=1}^{n} (\hat{\epsilon}_t - \bar{\epsilon})^2} \], \quad l = 1,2,\ldots \]

where \(\hat{\epsilon}_t \) denotes an estimate of the \(t \)th residual, \(\epsilon_t \), and \(\bar{\epsilon} = \sum_{t=1}^{n} \hat{\epsilon}_t / n \). A portmanteau statistic, \(Q_{(m)} \), is calculated from the formula (see Box and Ljung (1978)):
where m denotes the number of residual autocorrelations computed. (Advice on the choice of m is given in Section 9.) Under the hypothesis of model adequacy, $Q(m)$ has an asymptotic χ^2 distribution on $m - p - q - P - Q$ degrees of freedom. Let $\hat{r}^T = (\hat{r}_1, \hat{r}_2, \ldots, \hat{r}_m)$ then the variance-covariance matrix of \hat{r} is given by:

$$
\text{Var}(\hat{r}) = \left[I_m - X(X^TX)^{-1}X^T \right]/n.
$$

The construction of the matrix X is discussed in McLeod (1978). (Note that the mean, μ, and the residual variance, σ^2, play no part in calculating Var(\hat{r}) and therefore are not required as input to nag_tsa_resid_corr (g13asc).)

4 References

5 Arguments

1: arimav – Nag_ArimaOrder *

 Pointer to structure of type Nag_ArimaOrder with the following members:

 - p – Integer \hspace{1cm} \text{Input}
 - d – Integer \hspace{1cm} \text{Input}
 - q – Integer \hspace{1cm} \text{Input}
 - bigp – Integer \hspace{1cm} \text{Input}
 - bигd – Integer \hspace{1cm} \text{Input}
 - bigq – Integer \hspace{1cm} \text{Input}
 - s – Integer \hspace{1cm} \text{Input}

 \text{On entry:} these seven members of \texttt{arimav} must specify the orders vector (p, d, q, P, D, Q, s), respectively, of the ARIMA model for the output noise component.

 p, q, P and Q refer, respectively, to the number of autoregressive (ϕ), moving average (θ), seasonal autoregressive (Φ) and seasonal moving average (Θ) arguments.

 d, D and s refer, respectively, to the order of non-seasonal differencing, the order of seasonal differencing and the seasonal period.

 \text{Constraints:}

 - arimav->p, arimav->q, arimav->bigp, arimav->bigq, arimav->s ≥ 0,
 - arimav->p + arimav->q + arimav->bigp + arimav->bigq > 0,

 if arimav->s = 0, then arimav->bigp = 0 and arimav->bigq = 0.

2: n – Integer \hspace{1cm} \text{Input}

 \text{On entry:} the number of observations in the residual series, n.

 \text{Constraint:} n \geq 3.
3: \(v[n] \) – const double

Input

On entry: \(v[t-1] \) must contain an estimate of \(\varepsilon_t \), for \(t = 1,2,\ldots,n \).

Constraint: \(v \) must contain at least two distinct elements.

4: \(m \) – Integer

Input

On entry: the value of \(m \), the number of residual autocorrelations to be computed. See Section 9 for advice on the value of \(m \).

Constraint: \(n_{arma} < m < n \).

5: \(\text{par}[n_{arma}] \) – const double

Input

On entry: the parameter estimates in the order \(\phi_1, \phi_2, \ldots, \phi_p, \theta_1, \theta_2, \ldots, \theta_q, \Phi_1, \Phi_2, \ldots, \Phi_P, \Theta_1, \Theta_2, \ldots, \Theta_Q \) only.

Constraint: the elements in \(\text{par} \) must satisfy the stationarity and invertibility conditions.

6: \(n_{arma} \) – Integer

Input

On entry: the number of ARMA arguments, \(\phi, \theta, \Phi \) and \(\Theta \) arguments, i.e., \(n_{arma} = p + q + P + Q \).

Constraint: \(n_{arma} = \text{arimav} \rightarrow p + \text{arimav} \rightarrow q + \text{arimav} \rightarrow \text{bigp} + \text{arimav} \rightarrow \text{bigq} \).

7: \(r[m] \) – double

Output

On exit: an estimate of the residual autocorrelation coefficient at lag \(l \), for \(l = 1,2,\ldots,m \). If \(\text{fail.code} = \text{NE_G13AS_ZERO_VAR} \) on exit then all elements of \(r \) are set to zero.

8: \(\text{rc}[m \times \text{tdrc}] \) – double

Output

On exit: the estimated standard errors and correlations of the elements in the array \(r \). The correlation between \(r[i-1] \) and \(r[j-1] \) is returned as \(\text{rc}[(i-1) \times \text{tdrc} + j - 1] \) except that if \(i = j \) then \(\text{rc}[(i-1) \times \text{tdrc} + j - 1] \) contains the standard error of \(r[i-1] \). If on exit, \(\text{fail.code} = \text{NE_G13AS_FACT} \) or \(\text{NE_G13AS_DIAG} \), then all off-diagonal elements of \(\text{rc} \) are set to zero and all diagonal elements are set to \(1/\sqrt{n} \).

9: \(\text{tdrc} \) – Integer

Input

On entry: the stride separating matrix column elements in the array \(\text{rc} \).

Constraint: \(\text{tdrc} \geq m \).

10: \(\text{chi} \) – double *

Output

On exit: the value of the portmanteau statistic, \(Q_{(m)} \). If \(\text{fail.code} = \text{NE_G13AS_ZERO_VAR} \) on exit then \(\text{chi} \) is returned as zero.

11: \(\text{df} \) – Integer *

Output

On exit: the number of degrees of freedom of \(\text{chi} \).

12: \(\text{siglev} \) – double *

Output

On exit: the significance level of \(\text{chi} \) based on \(\text{df} \) degrees of freedom. If \(\text{fail.code} = \text{NE_G13AS_ZERO_VAR} \) on exit then \(\text{siglev} \) is returned as one.

13: \(\text{fail} \) – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, $\text{tdrc} = \langle \text{value} \rangle$ while $m = \langle \text{value} \rangle$. These arguments must satisfy $\text{tdrc} \geq m$.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARIMA_INPUT

On entry, $\text{arimav} \rightarrow p = \langle \text{value} \rangle$, $\text{arimav} \rightarrow d = \langle \text{value} \rangle$, $\text{arimav} \rightarrow q = \langle \text{value} \rangle$, $\text{arimav} \rightarrow \text{bigp} = \langle \text{value} \rangle$, $\text{arimav} \rightarrow \text{bigd} = \langle \text{value} \rangle$, $\text{arimav} \rightarrow \text{bigq} = \langle \text{value} \rangle$ and $\text{arimav} \rightarrow s = \langle \text{value} \rangle$. Constraints on the members of arimav are:

- $\text{arimav} \rightarrow p$, $\text{arimav} \rightarrow q$, $\text{arimav} \rightarrow \text{bigp}$, $\text{arimav} \rightarrow \text{bigq}$, $\text{arimav} \rightarrow s \geq 0$,
- $\text{arimav} \rightarrow p + \text{arimav} \rightarrow q + \text{arimav} \rightarrow \text{bigp} + \text{arimav} \rightarrow \text{bigq} > 0$, if $\text{arimav} \rightarrow s = 0$, then $\text{arimav} \rightarrow \text{bigp} = 0$ and $\text{arimav} \rightarrow \text{bigq} = 0$.

NE_G13AS_AR

On entry, the autoregressive (or moving average) arguments are extremely close to or outside the stationarity (or invertibility) region. To proceed, you must supply different parameter estimates in the array par.

NE_G13AS_DIAG

This is an unlikely exit. At least one of the diagonal elements of rc was found to be either negative or zero. In this case all off-diagonal elements of rc are returned as zero and all diagonal elements of rc set to $1/\sqrt{n}$.

NE_G13AS_FACT

On entry, one or more of the AR operators has a factor in common with one or more of the MA operators. To proceed, this common factor must be deleted from the model. In this case, the off-diagonal elements of rc are returned as zero and the diagonal elements set to $1/\sqrt{n}$. All other output quantities will be correct.

NE_G13AS_ITER

This is an unlikely exit brought about by an excessive number of iterations being needed to evaluate the zeros of the AR or MA polynomials. All output arguments are undefined.

NE_G13AS_ZERO_VAR

On entry, the residuals are practically identical giving zero (or near zero) variance. In this case chi is set to zero, siglev to one and all the elements of r set to zero.

NE_INPUT_NARMA

On entry, $\text{arimav} \rightarrow p = \langle \text{value} \rangle$, $\text{arimav} \rightarrow q = \langle \text{value} \rangle$, $\text{arimav} \rightarrow \text{bigp} = \langle \text{value} \rangle$, $\text{arimav} \rightarrow \text{bigq} = \langle \text{value} \rangle$ while $\text{narma} = \langle \text{value} \rangle$. Constraint: $\text{narma} = \text{arimav} \rightarrow p + \text{arimav} \rightarrow q + \text{arimav} \rightarrow \text{bigp} + \text{arimav} \rightarrow \text{bigq}$.

NE_INT_3

On entry, $m = \langle \text{value} \rangle$, $n = \langle \text{value} \rangle$, $\text{narma} = \langle \text{value} \rangle$. Constraint: $\text{narma} < m < n$.
On entry, \(n = \text{<value>} \).
Constraint: \(n \geq 3 \).

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy
The computations are believed to be stable.

8 Parallelism and Performance
Not applicable.

9 Further Comments

9.1 Timing
The time taken by nag_tsa_resid_corr (g13asc) depends upon the number of residual autocorrelations to be computed, \(m \).

9.2 Choice of \(m \)
The number of residual autocorrelations to be computed, \(m \) should be chosen to ensure that when the ARMA model (1) is written as either an infinite order autoregressive process:

\[
W_t - \mu = \sum_{j=1}^{\infty} \pi_j (W_{t-j} - \mu) + \epsilon_t
\]

or as an infinite order moving average process:

\[
W_t - \mu = \sum_{j=1}^{\infty} \psi_j \epsilon_{t-j} + \epsilon_t
\]

then the two sequences \(\{\pi_1, \pi_2, \ldots\} \) and \(\{\psi_1, \psi_2, \ldots\} \) are such that \(\pi_j \) and \(\psi_j \) are approximately zero for \(j > m \). An overestimate of \(m \) is therefore preferable to an under-estimate of \(m \). In many instances the choice \(m = 10 \) will suffice. In practice, to be on the safe side, you should try setting \(m = 20 \).

9.3 Approximate Standard Errors
When \(\text{fail.code} = \text{NE_G13AS_FACT} \) or \(\text{NE_G13AS_DIAG} \) all the standard errors in \(\text{rc} \) are set to \(1/\sqrt{n} \). This is the asymptotic standard error of \(\hat{r}_1 \) when all the autoregressive and moving average arguments are assumed to be known rather than estimated.

10 Example
A program to fit an ARIMA(1,1,2) model to a series of 30 observations. 10 residual autocorrelations are computed.
#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 Integer exit_status = 0, i, idf, j, m, *mr = 0, narma, ni, npar;
 Integer nres, nseries, nx;
 NagError fail;
 Nag_ArimaOrder arimav;
 Nag_G13_Opt options;
 Nag_TransfOrder transfv;
 double chi, df, objf, *par = 0, *r = 0, *rc = 0, *res, *sd = 0,
 siglev, *x = 0;

 INIT_FAIL(fail);

 printf("nag_tsa_resid_corr (g13asc) Example Program Results\n\n");

 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif

 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n]", &nx);
 #else
 scanf("%"NAG_IFMT"%*[\n]", &nx);
 #endif
 if (!(x = NAG_ALLOC(nx, double))
 || !(mr = NAG_ALLOC(7, Integer)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 for (i = 1; i <= nx; ++i)
 {
 #ifdef _WIN32
 scanf_s("%lf", &x[i - 1]);
 #else
 scanf("%lf", &x[i - 1]);
 #endif
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n]");
 #else
 scanf("%"NAG_IFMT"%*[\n]");
 #endif
 }

 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 for (i = 1; i <= 7; ++i)
 {
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n]", &mr[i - 1]);
 #else
 scanf("%"NAG_IFMT"%*[\n]", &mr[i - 1]);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 }

 if (!exit_status)
 {
 /* Process the data */
 /* Call nag_tsa_resid_corr (g13asc) */
 }

 return 0;
}

END:
#endif

 if (!(par = NAG_ALLOC(npar, double))
 || !(sd = NAG_ALLOC(npar, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 for (i = 1; i <= npar; ++i)
 par[i - 1] = 0.0;

 nseries = 1;
 arimav.p = mr[0];
 arimav.d = mr[1];
 arimav.q = mr[2];
 arimav.bigp = mr[3];
 arimav.bigd = mr[4];
 arimav.bigq = mr[5];
 arimav.s = mr[6];

 /* nag_tsa_options_init (g13bxc).
 * Initialization function for option setting
 */
 nag_tsa_options_init(&options);
 /* nag_tsa_transf_orders (g13byc).
 * Allocates memory to transfer function model orders
 */
 nag_tsa_transf_orders(nseries, &transfv, &fail);
 /* nag_tsa_multi_inp_model_estim (g13bec).
 * Estimation for time series models
 */
 fflush(stdout);
 nag_tsa_multi_inp_model_estim(&arimav, nseries, &transfv, par, npar, nx, x,
 &s, &objf, &df, &options, &fail);

 nres = options.lenres;
 res = options.res;
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_tsa_multi_inp_model_estim (g13bec).
 \n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

 m = 10;
 if (!(r = NAG_ALLOC(m, double))
 || !(rc = NAG_ALLOC(m*m, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 /* nag_tsa_resid_corr (g13asc).
 * Univariate time series, diagnostic checking of residuals,
 * following nag_tsa_multi_inp_model_estim (g13bec)
 */
 nag_tsa_resid_corr(&arimav, nres, res, m, par, narma, r, rc, m, &chi, &sidf, &siglev, &fail);
 if (fail.code != NE_NOERROR)
 {
 printf("Error from nag_tsa_resid_corr (g13asc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
 }

 printf("RESIDUAL AUTOCORRELATION FUNCTION");
 printf("\n-----------------------------------\n\n");

 g13 – Time Series Analysis
 g13asc

Mark 25

 g13asc.7
for (j = 0; j <= (m-1)/7; j++)
{
 ni = MIN(7, m - j*7);
 printf("LAG K ");
 for (i = 0; i < ni; i++)
 printf("%5"NAG_IFMT" ", i+j*7+1);
 printf("\nR(K) ");
 for (i = 0; i < ni; i++)
 printf("%7.3f", r[i+j*7]);
 printf("\nST.ERROR ");
 for (i = 0; i < ni; i++)
 printf("%7.3f", rc[(m+1)*(i+j*7)]);
 printf("\n---\n");
}

/* nag_tsa_free (g13zc).
 * Freeing function for use with g13 option setting
 */

end:
 NAG_FREE(x);
 NAG_FREE(mr);
 NAG_FREE(par);
 NAG_FREE(sd);
 NAG_FREE(r);
 NAG_FREE(rc);
 return exit_status;

10.2 Program Data

nag_tsa_resid_corr (g13asc) Example Program Data

30: nx, length of the time series
-217 -177 -166 -136 -110 -95 -64 -37
-14 -25 -51 -62 -73 -88 -113 -120
-83 -33 -19 21 17 44 44 78
88 122 126 114 85 64: End of time series
1 1 2 0 0 0 0: mr, orders vector of the model

10.3 Program Results

nag_tsa_resid_corr (g13asc) Example Program Results

Parameters to g13bec

nseries................... 1

criteria................... Nag_Exact
cfixed..................... Nag_FALSE
alpha..................... 1.00e-02
beta...................... 1.00e+01
delta..................... 1.00e+03
gamma..................... 1.00e-07
print_level.............. Nag_Soln
outfile.................. stdout

The number of iterations carried out is 15

The final values of the parameters and their standard deviations are

<table>
<thead>
<tr>
<th>i</th>
<th>para[i]</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.094096</td>
<td>0.361543</td>
</tr>
<tr>
<td>2</td>
<td>-0.579152</td>
<td>0.295984</td>
</tr>
<tr>
<td>3</td>
<td>-0.611889</td>
<td>0.182241</td>
</tr>
<tr>
<td>4</td>
<td>9.932425</td>
<td>7.050207</td>
</tr>
</tbody>
</table>

The residual sum of squares = 9.436281e+03
The objective function = 9.762154e+03
The degrees of freedom = 25.00

RESIDUAL AUTOCORRELATION FUNCTION

<table>
<thead>
<tr>
<th>LAG</th>
<th>K</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(K)</td>
<td></td>
<td>0.030</td>
<td>0.026</td>
<td>-0.039</td>
<td>0.043</td>
<td>-0.129</td>
<td>-0.062</td>
<td>-0.218</td>
</tr>
<tr>
<td>ST.ERROR</td>
<td></td>
<td>0.011</td>
<td>0.116</td>
<td>0.122</td>
<td>0.147</td>
<td>0.171</td>
<td>0.171</td>
<td>0.179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAG</th>
<th>K</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(K)</td>
<td></td>
<td>-0.105</td>
<td>-0.024</td>
<td>-0.072</td>
</tr>
<tr>
<td>ST.ERROR</td>
<td></td>
<td>0.182</td>
<td>0.182</td>
<td>0.184</td>
</tr>
</tbody>
</table>