NAG Library Function Document

nag_tsa_exp_smooth (g13amc)

1 Purpose

nag_tsa_exp_smooth (g13amc) performs exponential smoothing using either single exponential, double exponential or a Holt–Winters method.

2 Specification

```c
#include <nag.h>
#include <nagg13.h>

void nag_tsa_exp_smooth (Nag_InitialValues mode, Nag_ExpSmoothType itype,
                        Integer p, const double param[], Integer n, const double y[], Integer k,
                        double init[], Integer nf, double fv[], double fse[], double yhat[],
                        double res[], double *dv, double *ad, double r[], NagError *fail)
```

3 Description

Exponential smoothing is a relatively simple method of short term forecasting for a time series. nag_tsa_exp_smooth (g13amc) provides five types of exponential smoothing; single exponential, Brown's double exponential, linear Holt (also called double exponential smoothing in some references), additive Holt–Winters and multiplicative Holt–Winters. The choice of smoothing method used depends on the characteristics of the time series. If the mean of the series is only slowly changing then single exponential smoothing may be suitable. If there is a trend in the time series, which itself may be slowly changing, then double exponential smoothing may be suitable. If there is a seasonal component to the time series, e.g., daily or monthly data, then one of the two Holt–Winters methods may be suitable.

For a time series y_t, for $t = 1, 2, \ldots, n$, the five smoothing functions are defined by the following:

Single Exponential Smoothing

\[
\begin{align*}
m_t & = \alpha y_t + (1 - \alpha)m_{t-1} \\
\hat{y}_{t+f} & = m_t \\
\text{var} (\hat{y}_{t+f}) & = \text{var} (\epsilon_t) (1 + (f - 1)\alpha^2)
\end{align*}
\]

Brown Double Exponential Smoothing

\[
\begin{align*}
m_t & = \alpha y_t + (1 - \alpha)m_{t-1} \\
r_t & = \alpha(m_t - m_{t-1}) + (1 - \alpha)r_{t-1} \\
\hat{y}_{t+f} & = m_t + ((f - 1) + 1/\alpha)r_t \\
\text{var} (\hat{y}_{t+f}) & = \text{var} (\epsilon_t) \left(1 + \sum_{i=0}^{f-1} (2\alpha + (i - 1)\alpha^2)^2\right)
\end{align*}
\]

Linear Holt Smoothing

\[
\begin{align*}
m_t & = \alpha y_t + (1 - \alpha)m_{t-1} + \phi r_{t-1} \\
r_t & = \gamma(m_t - m_{t-1}) + (1 - \gamma)\phi r_{t-1} \\
\hat{y}_{t+f} & = m_t + \sum_{i=1}^{f-1} \phi^i r_t \\
\text{var} (\hat{y}_{t+f}) & = \text{var} (\epsilon_t) \left(1 + \sum_{i=1}^{f-1} \left(\alpha + \frac{\alpha \gamma \phi^{i-1}}{1 - \phi}\right)^2\right)
\end{align*}
\]
Additive Holt–Winters Smoothing

\[
\begin{align*}
 m_t &= \alpha(y_t - s_{t-p}) + (1 - \alpha)(m_{t-1} + \phi r_{t-1}) \\
 r_t &= \gamma(m_t - m_{t-k}) + (1 - \gamma)\phi r_{t-1} \\
 s_t &= \beta(y_t - m_t) + (1 - \beta)s_{t-p} \\
 \hat{y}_{t+f} &= m_t + \left(\sum_{i=1}^{f} \phi^i r_t\right) + s_{t-p}
\end{align*}
\]

\[
\text{var} \left(\hat{y}_{t+f}\right) = \text{var} \left(\epsilon_t\right) \left(1 + \sum_{i=1}^{f-1} \psi_i^2\right)
\]

\[
\psi_i = \begin{cases}
 0 & \text{if } i \geq f \\
 \alpha + \frac{\alpha \gamma \phi^{(i-1)}}{(\phi-1)} & \text{if } i \mod p \neq 0 \\
 \alpha + \frac{\alpha \gamma \phi^{(i-1)}}{(\phi-1)} + \beta(1 - \alpha) & \text{otherwise}
\end{cases}
\]

Multiplicative Holt–Winters Smoothing

\[
\begin{align*}
 m_t &= \alpha y_t / s_{t-p} + (1 - \alpha)(m_{t-1} + \phi r_{t-1}) \\
 r_t &= \gamma(m_t / m_{t-k}) + (1 - \gamma)\phi r_{t-1} \\
 s_t &= \beta(y_t / m_t) + (1 - \beta)s_{t-p} \\
 \hat{y}_{t+f} &= \left(m_t + \sum_{i=1}^{f} \phi^i r_t \right) \times s_{t-p}
\end{align*}
\]

\[
\text{var} \left(\hat{y}_{t+f}\right) = \text{var} \left(\epsilon_t\right) \left(\sum_{i=0}^{\frac{p-1}{2}} \left(\psi_{2i-1} s_{t+f} \right)^2 \right)
\]

and \(\psi\) is defined as in the additive Holt–Winters smoothing.

where \(m_t\) is the mean, \(r_t\) is the trend and \(s_t\) is the seasonal component at time \(t\) with \(p\) being the seasonal order. The \(f\)-step ahead forecasts are given by \(\hat{y}_{t+f}\) and their variances by \(\text{var} \left(\hat{y}_{t+f}\right)\). The term \(\text{var} \left(\epsilon_t\right)\) is estimated as the mean deviation.

The parameters, \(\alpha\), \(\beta\) and \(\gamma\) control the amount of smoothing. The nearer these parameters are to one, the greater the emphasis on the current data point. Generally these parameters take values in the range 0.1 to 0.3. The linear Holt and two Holt–Winters smoothers include an additional parameter, \(\phi\), which acts as a trend dampener. For \(0 < \phi < 1\) the trend is dampened and for \(\phi > 1\) the forecast function has an exponential trend, \(\phi = 0.0\) removes the trend term from the forecast function and \(\phi = 1.0\) does not dampen the trend.

For all methods, values for \(\alpha\), \(\beta\), \(\gamma\) and \(\psi\) can be chosen by trying different values and then visually comparing the results by plotting the fitted values along side the original data. Alternatively, for single exponential smoothing a suitable value for \(\alpha\) can be obtained by fitting an ARIMA\((0, 1, 1)\) model (see \text{nag_tsa_multi_inp_model_estim (g13bec)}). For Brown’s double exponential smoothing and linear Holt smoothing with no dampening, (i.e., \(\phi = 1.0\)), suitable values for \(\alpha\) and \(\gamma\) can be obtained by fitting an ARIMA\((0, 2, 2)\) model. Similarly, the linear Holt method, with \(\phi \neq 1.0\), can be expressed as an ARIMA\((1, 2, 2)\) model and the additive Holt–Winters, with no dampening, \((\phi = 1.0)\), can be expressed as a seasonal ARIMA model with order \(p\) of the form ARIMA\((0, 1, p + 1)(0, 1, 0)\). There is no similar procedure for obtaining parameter values for the multiplicative Holt–Winters method, or the additive Holt–Winters method with \(\phi \neq 1.0\). In these cases parameters could be selected by minimizing a measure of fit using one of the nonlinear optimization functions in Chapter e04.

In addition to values for \(\alpha\), \(\beta\), \(\gamma\) and \(\psi\), initial values, \(m_0\), \(r_0\) and \(s_{-j}\), for \(j = 0, 1, \ldots, p - 1\), are required to start the smoothing process. You can either supply these or they can be calculated by \text{nag_tsa_exp_smooth (g13amc)} from the first \(k\) observations. For single exponential smoothing the mean of the observations is used to estimate \(m_0\). For Brown double exponential smoothing and linear Holt smoothing, a simple linear regression is carried out with the series as the dependent variable and the sequence \(1, 2, \ldots, k\) as the independent variable. The intercept is then used to estimate \(m_0\) and the slope to estimate \(r_0\). In the case of the additive Holt–Winters method, the same regression is carried out, but a separate intercept is used for each of the \(p\) seasonal groupings. The slope gives an estimate for \(r_0\) and the mean of the \(p\) intercepts is used as the estimate of \(m_0\). The seasonal parameters \(s_{-j}\), for \(j = 0, 1, \ldots, p - 1\), are estimated as the \(p\) intercepts – \(m_0\). A similar approach is adopted for the multiplicative Holt–Winter’s method.
One step ahead forecasts, \hat{y}_{t+1} are supplied along with the residuals computed as $(y_{t+1} - \hat{y}_{t+1})$. In addition, two measures of fit are provided. The mean absolute deviation,

$$\frac{1}{n} \sum_{t=1}^{n} |y_t - \hat{y}_t|$$

and the square root of the mean deviation

$$\sqrt{\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2}.$$

4 References

5 Arguments

1: \textbf{mode} – Nag_InitialValues

\textit{Input}

\textit{On entry:} indicates if nag_tsa_exp_smooth (g13amc) is continuing from a previous call or, if not, how the initial values are computed.

\textbf{mode} = Nag_InitialValuesSupplied

Required values for m_0, r_0 and s_j, for $j = 0, 1, \ldots, p - 1$, are supplied in \textit{init}.

\textbf{mode} = Nag_ContinueAndUpdate

nag_tsa_exp_smooth (g13amc) continues from a previous call using values that are supplied in \textit{r}.

\textbf{mode} = Nag_EstimateInitialValues

Required values for m_0, r_0 and s_j, for $j = 0, 1, \ldots, p - 1$, are estimated using the first k observations.

\textit{Constraint:} \textbf{mode} = Nag_InitialValuesSupplied, Nag_ContinueAndUpdate or Nag_EstimateInitialValues.

2: \textbf{itype} – Nag_ExpSmoothType

\textit{Input}

\textit{On entry:} the smoothing function.

\textbf{itype} = Nag_SingleExponential

Single exponential.

\textbf{itype} = Nag_BrownsExponential

Brown double exponential.

\textbf{itype} = Nag_LinearHolt

Linear Holt.

\textbf{itype} = Nag_AdditiveHoltWinters

Additive Holt–Winters.

\textbf{itype} = Nag_MultiplicativeHoltWinters

Multiplicative Holt–Winters.

\textit{Constraint:} \textbf{itype} = Nag_SingleExponential, Nag_BrownsExponential, Nag_LinearHolt, Nag_AdditiveHoltWinters or Nag_MultiplicativeHoltWinters.

3: \textbf{p} – Integer

\textit{Input}

\textit{On entry:} if \textbf{itype} = Nag_AdditiveHoltWinters or Nag_MultiplicativeHoltWinters, the seasonal order, p, otherwise p is not referenced.

\textit{Constraint:} if \textbf{itype} = Nag_AdditiveHoltWinters or Nag_MultiplicativeHoltWinters, $p > 1$.
4: \texttt{param[dim]} – const double\hfill \textit{Input}

\textbf{Note:} the dimension, \texttt{dim}, of the array \texttt{param} must be at least

1 \text{ when } \texttt{itype} = \text{Nag_SingleExponential} or \text{Nag_BrownsExponential};
3 \text{ when } \texttt{itype} = \text{Nag_LinearHolt};
4 \text{ when } \texttt{itype} = \text{Nag_AdditiveHoltWinters} or \text{Nag_MultiplicativeHoltWinters}.

\textit{On entry:} the smoothing parameters.

If \texttt{itype} = \text{Nag_SingleExponential} or \text{Nag_BrownsExponential}, \texttt{param[0]} = \alpha \text{ and any remaining elements of } \texttt{param} \text{ are not referenced.}

If \texttt{itype} = \text{Nag_LinearHolt}, \texttt{param[0]} = \alpha, \texttt{param[1]} = \gamma, \texttt{param[2]} = \phi \text{ and any remaining elements of } \texttt{param} \text{ are not referenced.}

If \texttt{itype} = \text{Nag_AdditiveHoltWinters} or \text{Nag_MultiplicativeHoltWinters}, \texttt{param[0]} = \alpha, \texttt{param[1]} = \gamma, \texttt{param[2]} = \beta \text{ and } \texttt{param[3]} = \phi.

\textbf{Constraints:}

- if \texttt{itype} = \text{Nag_SingleExponential}, \(0 \leq \alpha \leq 1.0\);
- if \texttt{itype} = \text{Nag_BrownsExponential}, \(0.0 < \alpha \leq 1.0\);
- if \texttt{itype} = \text{Nag_LinearHolt}, \(0.0 \leq \alpha \leq 1.0\) and \(0.0 \leq \gamma \leq 1.0\) and \(\phi \geq 0.0\);
- if \texttt{itype} = \text{Nag_AdditiveHoltWinters} or \text{Nag_MultiplicativeHoltWinters}, \(0.0 \leq \alpha \leq 1.0\) and \(0.0 \leq \gamma \leq 1.0\) and \(0.0 \leq \beta \leq 1.0\) and \(\phi \geq 0.0\).

5: \texttt{n} – Integer\hfill \textit{Input}

\textit{On entry:} the number of observations in the series.

\textbf{Constraint:} \texttt{n} \(\geq 0\).

6: \texttt{y[n]} – const double\hfill \textit{Input}

\textit{On entry:} the time series.

7: \texttt{k} – Integer\hfill \textit{Input}

\textit{On entry:} if \texttt{mode} = \text{Nag_EstimateInitialValues}, the number of observations used to initialize the smoothing.

If \texttt{mode} \neq \text{Nag_EstimateInitialValues}, \texttt{k} is not referenced.

\textbf{Constraints:}

- if \texttt{mode} = \text{Nag_EstimateInitialValues} and \texttt{itype} = \text{Nag_AdditiveHoltWinters} or \text{Nag_MultiplicativeHoltWinters}, \(2 \times p \leq k \leq n\);
- if \texttt{mode} = \text{Nag_EstimateInitialValues} and \texttt{itype} = \text{Nag_SingleExponential}, \\text{Nag_BrownsExponential} or \text{Nag_LinearHolt}, \(1 \leq k \leq n\).

8: \texttt{init[dim]} – double\hfill \textit{Input/Output}

\textbf{Note:} the dimension, \texttt{dim}, of the array \texttt{init} must be at least

1 \text{ when } \texttt{itype} = \text{Nag_SingleExponential};
2 + \text{ when } \texttt{itype} = \text{Nag_BrownsExponential} or \text{Nag_LinearHolt};
2 + p \text{ when } \texttt{itype} = \text{Nag_AdditiveHoltWinters} or \text{Nag_MultiplicativeHoltWinters}.

\textit{On entry:} if \texttt{mode} = \text{Nag_InitialValuesSupplied}, the initial values for \(m_0, r_0\) and \(s_{-j}\), for \(j = 0, 1, \ldots, p - 1\), used to initialize the smoothing.

If \texttt{itype} = \text{Nag_SingleExponential}, \texttt{init[0]} = \(m_0\) and the remaining elements of \texttt{init} are not referenced.

If \texttt{itype} = \text{Nag_BrownsExponential} or \text{Nag_LinearHolt}, \texttt{init[0]} = \(m_0\) and \texttt{init[1]} = \(r_0\) and the remaining elements of \texttt{init} are not referenced.
If \(\text{itype} = \text{Nag}_\text{AdditiveHoltWinters} \) or \(\text{Nag}_\text{MultiplicativeHoltWinters} \), \(\text{init}[0] = m_0, \text{init}[1] = r_0 \) and \(\text{init}[2] \) to \(\text{init}[p+1] \) hold the values for \(s_{-j} \), for \(j = 0, 1, \ldots, p-1 \). The remaining elements of \(\text{init} \) are not referenced.

On exit: if \(\text{mode} \neq \text{Nag}_\text{ContinueAndUpdate} \), the values used to initialize the smoothing. These are in the same order as described above.

9: \(\text{nf} \) – Integer
 \text{Input}
 On entry: the number of forecasts required beyond the end of the series. Note, the one step ahead forecast is always produced.
 \text{Constraint:} \(\text{nf} \geq 0 \).

10: \(\text{fv}[^{\text{nf}}] \) – double
 \text{Output}
 On exit: \(\hat{y}_{t+j} \), for \(f = 1, 2, \ldots, \text{nf} \), the next \(\text{nf} \) step forecasts. Where \(t = \text{n} \), if \(\text{mode} \neq \text{Nag}_\text{ContinueAndUpdate} \), else \(t \) is the total number of smoothed and forecast values already produced.

11: \(\text{fse}[^{\text{nf}}] \) – double
 \text{Output}
 On exit: the forecast standard errors for the values given in \(\text{fv} \).

12: \(\text{yhat}[^{\text{n}}] \) – double
 \text{Output}
 On exit: \(\hat{y}_{t+1} \), for \(t = 1, 2, \ldots, \text{n} \), the one step ahead forecast values, with \(\text{yhat}[i - 1] \) being the one step ahead forecast of \(y[i - 2] \).

13: \(\text{res}[^{\text{n}}] \) – double
 \text{Output}
 On exit: the residuals, \((y_{t+1} - \hat{y}_{t+1}) \), for \(t = 1, 2, \ldots, \text{n} \).

14: \(\text{dv} \) – double *
 \text{Output}
 On exit: the square root of the mean deviation.

15: \(\text{ad} \) – double *
 \text{Output}
 On exit: the mean absolute deviation.

16: \(\text{r}[^{\text{dim}}] \) – double
 \text{Input/Output}
 \text{Note:} the dimension, \(\text{dim} \), of the array \(\text{r} \) must be at least
 \begin{align*}
 13 & \text{ when } \text{itype} = \text{Nag}_\text{SingleExponential}, \text{Nag}_\text{BrownsExponential} \text{ or } \text{Nag}_\text{LinearHolt}; \\
 13 + p & \text{ when } \text{itype} = \text{Nag}_\text{AdditiveHoltWinters} \text{ or } \text{Nag}_\text{MultiplicativeHoltWinters}.
 \end{align*}
 On entry: if \(\text{mode} = \text{Nag}_\text{ContinueAndUpdate} \), \(\text{r} \) must contain the values as returned by a previous call to \text{nag_rand_exp_smooth} (g05pmc) or \text{nag_tsa_exp_smooth} (g13amc), \(\text{r} \) need not be set otherwise.
 If \(\text{itype} = \text{Nag}_\text{SingleExponential}, \text{Nag}_\text{BrownsExponential} \text{ or } \text{Nag}_\text{LinearHolt} \), only the first 13 elements of \(\text{r} \) are referenced, otherwise the first 13 + \(p \) elements are referenced.
 On exit: the information on the current state of the smoothing.
 \text{Constraint:} if \(\text{mode} = \text{Nag}_\text{ContinueAndUpdate} \), \(\text{r} \) must have been initialized by at least one previous call to \text{nag_rand_exp_smooth} (g05pmc) or \text{nag_tsa_exp_smooth} (g13amc) with \(\text{mode} \neq \text{Nag}_\text{ContinueAndUpdate} \), and \(\text{r} \) should not have been changed since the last call to \text{nag_rand_exp_smooth} (g05pmc) or \text{nag_tsa_exp_smooth} (g13amc).

17: \(\text{fail} \) – NagError *
 \text{Input/Output}
 The NAG error argument (see Section 3.6 in the Essential Introduction).
6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM
On entry, argument \(\langle value\rangle\) had an illegal value.

NE_ENUM_INT
On entry, \(\textit{itype} = \langle value\rangle\) and \(\textit{p} = \langle value\rangle\).
Constraint: if \(\textit{itype} = \text{Nag_additiveHoltWinters}\) or \(\text{Nag_multiplicativeHoltWinters}\), \(\textit{p} > 1\).
On entry, \(\textit{p} = \langle value\rangle\).
Constraint: if \(\textit{itype} = \text{Nag_additiveHoltWinters}\) or \(\text{Nag_multiplicativeHoltWinters}\), \(\textit{p} > 1\).

NE_INT
On entry, \(\textit{n} = \langle value\rangle\).
Constraint: \(\textit{n} \geq 0\).
On entry, \(\textit{nf} = \langle value\rangle\).
Constraint: \(\textit{nf} \geq 0\).

NE_INT_2
On entry, \(\textit{k} = \langle value\rangle\) and \(\textit{n} = \langle value\rangle\).
Constraint: if \(\textit{mode} = \text{Nag_EstimateInitialValues}\) and \(\textit{itype} = \text{Nag_additiveHoltWinters}\) or \(\text{Nag_multiplicativeHoltWinters}\), \(1 \leq \textit{k} \leq \textit{n}\).

NE_INT_3
On entry, \(\textit{k} = \langle value\rangle\), \(2 \times \textit{p} = \langle value\rangle\).
Constraint: if \(\textit{mode} = \text{Nag_EstimateInitialValues}\) and \(\textit{itype} = \text{Nag_additiveHoltWinters}\) or \(\text{Nag_multiplicativeHoltWinters}\), \(2 \times \textit{p} \leq \textit{k}\).

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MODEL_PARAMS
A multiplicative Holt–Winters model cannot be used with the supplied data.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_ARRAY
On entry, \(\text{param}[\langle value\rangle] = \langle value\rangle\).
Constraint: \(0.0 \leq \text{param}[\langle value\rangle] \leq 1.0\).
On entry, \(\text{param}[\langle value\rangle] = \langle value\rangle\).
Constraint: if \(\textit{itype} = \text{Nag_BrownsExponential}\), \(0.0 < \text{param}[\langle value\rangle] \leq 1.0\).
On entry, \(\text{param}[\langle value\rangle] = \langle value\rangle\).
Constraint: \(\text{param}[\langle value\rangle] \geq 0.0\).
On entry, the array \(r \) has not been initialized correctly.

7 Accuracy
Not applicable.

8 Parallelism and Performance
Not applicable.

9 Further Comments
Single exponential, Brown’s double exponential and linear Holt smoothing methods are stable, whereas the two Holt–Winters methods can be affected by poor initial values for the seasonal components.
See also the function document for nag_rand_exp_smooth (g05pmc).

10 Example
This example smooths a time series relating to the rate of the earth’s rotation about its polar axis.

10.1 Program Text
/* nag_tsa_exp_smooth (g13amc) Example Program.
 * Copyright 2014 Numerical Algorithms Group.
 * Mark 9, 2009.
 */
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{
 /* Integer scalar and array declarations */
 Integer exit_status = 0;
 Integer i, ival, k, n, nf, p;
 /* Double scalar and array declarations */
 double ad, dv;
 double *fse = 0, *fv = 0, *init = 0, *param = 0, *r = 0, *res = 0;
 double *y = 0, *yhat = 0;
 /* Character scalar and array declarations */
 char smode[40], sitype[40];
 /* NAG structures */
 Nag_InitialValues mode;
 Nag_ExpSmoothType itype;
 NagError fail;

 /* Initialise the error structure */
 INIT_FAIL(fail);
 printf("nag_tsa_exp_smooth (g13amc) Example Program Results\n");

 /* Skip headings in data file*/
 #ifdef _WIN32
 scanf_s("%*[\n] ");
 #else
 scanf("%*[\n] ");
 #endif
 /* Read in the initial arguments */
 #ifdef _WIN32
 scanf("%*[\n] ");
 #endif
#include "NAG_IFMT"

/*
 * nag_enum_name_to_value (x04nac).
 * Converts NAG enum member name to value
 */

mode = (Nag_InitialValues) nag_enum_name_to_value(smode);
itype = (Nag_ExpSmoothType) nag_enum_name_to_value(sitype);

if (!(fse = NAG_ALLOC(nf, double)) ||
 !(fv = NAG_ALLOC(nf, double)) ||
 !(res = NAG_ALLOC(n, double)) ||
 !(y = NAG_ALLOC(n, double)) ||
 !(yhat = NAG_ALLOC(n, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}

/* Read in the observed data */
for (i = 0; i < n; i++)
 scanf("%lf", &y[i]);

if (itype == Nag_SingleExponential)
{
 /* Single exponential smoothing required */
 if (!(param = NAG_ALLOC(1, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 scanf("%lf%\n", ¶m[0]);
 p = 0;
 ival = 1;
}
else if (itype == Nag_BrownsExponential)
{
 /* Browns exponential smoothing required */
 if (!(param = NAG_ALLOC(2, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 scanf("%lf %lf%\n", ¶m[0], ¶m[1]);
}
endif
p = 0;
ival = 2;
}
else if (itype == Nag_LinearHolt)
{
 /* Linear Holt smoothing required */
 if (!(param = NAG_ALLOC(3, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
#endif
 #ifdef _WIN32
 scanf_s("%lf %lf %lf%\n", ¶m[0], ¶m[1], ¶m[2]);
 #else
 scanf("%lf %lf %lf%\n", ¶m[0], ¶m[1], ¶m[2]);
 #endif
 p = 0;
 ival = 2;
}
else if (itype == Nag_AdditiveHoltWinters)
{
 /* Additive Holt Winters smoothing required */
 if (!(param = NAG_ALLOC(4, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
#endif
 #ifdef _WIN32
 scanf_s("%lf %lf %lf %lf %NAG_IFMT%\n", ¶m[0], ¶m[1], ¶m[2], ¶m[3], &p);
 #else
 scanf("%lf %lf %lf %lf %NAG_IFMT%\n", ¶m[0], ¶m[1], ¶m[2], ¶m[3], &p);
 #endif
 ival = p+2;
}
else if (itype == Nag_MultiplicativeHoltWinters)
{
 /* Multiplicative Holt Winters smoothing required */
 if (!(param = NAG_ALLOC(4, double)))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
#endif
 #ifdef _WIN32
 scanf_s("%lf %lf %lf %lf %NAG_IFMT%\n", ¶m[0], ¶m[1], ¶m[2], ¶m[3], &p);
 #else
 scanf("%lf %lf %lf %lf %NAG_IFMT%\n", ¶m[0], ¶m[1], ¶m[2], ¶m[3], &p);
 #endif
 ival = p+2;
}
else
{
 printf("%s is an unknown type\n", sitype);
 exit_status = -1;
 goto END;
}

/* Allocate some more memory */
if (!(init = NAG_ALLOC(p+2, double)) || !(r = NAG_ALLOC(p+13, double)))
{
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
}
#ifdef _WIN32
scanf_s("%*[\n] ");
#else
scanf("%*[\n] ");
#endif
if (mode == Nag_InitialValuesSupplied)
{
 /* User supplied initial values*/
 for (i = 0; i < ival; i++)
 #ifdef _WIN32
 scanf_s("%lf ", &init[i]);
 #else
 scanf("%lf ", &init[i]);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n] ");
 #else
 scanf("%*[\n] ");
 #endif
}
else if (mode == Nag_ContinueAndUpdate)
{
 /* Continuing from a previously saved R */
 for (i = 0; i < p+13; i++)
 #ifdef _WIN32
 scanf_s("%lf ", &r[i]);
 #else
 scanf("%lf ", &r[i]);
 #endif
 #ifdef _WIN32
 scanf_s("%*[\n] ");
 #else
 scanf("%*[\n] ");
 #endif
}
else if (mode == Nag_EstimateInitialValues)
{
 /* Initial values calculated from first k observations */
 #ifdef _WIN32
 scanf_s("%"NAG_IFMT"%*[\n] ", &k);
 #else
 scanf("%"NAG_IFMT"%*[\n] ", &k);
 #endif
}
else
{
 printf("%s is an unknown mode\n", smode);
 exit_status = -1;
 goto END;
}
/* Call the library routine to smooth the series */
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_tsa_exp_smooth (g13amc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
/* Display the output */
printf("Initial values used:\n");
for (i = 0; i < ival; i++)
 printf("%4"NAG_IFMT" %12.3f \n", i+1, init[i]);
printf("\n");
printf("Mean Deviation = %13.4e\n", dv);
printf("Absolute Deviation = %13.4e\n", ad);
printf("\n");
printf("Observed 1-Step\n");
for (i = 0; i < n; i++)
 printf("%4"NAG_IFMT" %12.3f %12.3f %12.3f\n", i+1, y[i], yhat[i], res[i]);
printf("\n");
printf("Forecast Standard\n");
for (i = 0; i < nf; i++)
 printf("%4"NAG_IFMT" %12.3f %12.3f \n", n+i+1, fv[i], fse[i]);

END:
NAG_FREE(fse);
NAG_FREE(fv);
NAG_FREE(init);
NAG_FREE(param);
NAG_FREE(r);
NAG_FREE(res);
NAG_FREE(y);
NAG_FREE(yhat);

return exit_status;
}

10.2 Program Data

nag_tsa_exp_smooth (g13amc) Example Program Data
Nag_EstimateInitialValues Nag_LinearHolt 11 5 : mode,itype,n,nf
180 135 213 181 148 204 228 225 198 200 187 : y
dependent arguments for itype = Nag_LinearHolt
0.01 1.0 1.0 : param[0],param[1],param[2]
dependent arguments for mode = Nag_ContinueAndUpdate
11 : k

10.3 Program Results

nag_tsa_exp_smooth (g13amc) Example Program Results
Initial values used:
1 168.018
2 3.800

Mean Deviation = 2.5473e+01
Absolute Deviation = 2.1233e+01

<table>
<thead>
<tr>
<th>Period</th>
<th>Observed Values</th>
<th>1-Step Forecast</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180.000</td>
<td>171.818</td>
<td>8.182</td>
</tr>
<tr>
<td>2</td>
<td>135.000</td>
<td>175.782</td>
<td>-40.782</td>
</tr>
<tr>
<td>3</td>
<td>213.000</td>
<td>178.848</td>
<td>34.152</td>
</tr>
<tr>
<td>4</td>
<td>181.000</td>
<td>183.005</td>
<td>-2.005</td>
</tr>
<tr>
<td>5</td>
<td>148.000</td>
<td>186.780</td>
<td>-38.780</td>
</tr>
<tr>
<td>6</td>
<td>204.000</td>
<td>189.800</td>
<td>14.200</td>
</tr>
<tr>
<td>7</td>
<td>228.000</td>
<td>193.492</td>
<td>34.508</td>
</tr>
<tr>
<td>8</td>
<td>225.000</td>
<td>197.732</td>
<td>27.268</td>
</tr>
<tr>
<td>9</td>
<td>198.000</td>
<td>202.172</td>
<td>-4.172</td>
</tr>
<tr>
<td>10</td>
<td>200.000</td>
<td>206.256</td>
<td>-6.256</td>
</tr>
<tr>
<td>11</td>
<td>187.000</td>
<td>210.256</td>
<td>-23.256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>Forecast Values</th>
<th>Standard Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>213.854</td>
<td>25.473</td>
</tr>
<tr>
<td>13</td>
<td>217.685</td>
<td>25.478</td>
</tr>
<tr>
<td>14</td>
<td>221.516</td>
<td>25.490</td>
</tr>
<tr>
<td>15</td>
<td>225.346</td>
<td>25.510</td>
</tr>
<tr>
<td>16</td>
<td>229.177</td>
<td>25.542</td>
</tr>
</tbody>
</table>