NAG Library Function Document

nag_tsa_auto_corr (g13abc)

1 Purpose

nag_tsa_auto_corr (g13abc) computes the sample autocorrelation function of a time series. It also computes the sample mean, the sample variance and a statistic which may be used to test the hypothesis that the true autocorrelation function is zero.

2 Specification

```c
#include <nag.h>
#include <nagl3.h>

void nag_tsa_auto_corr (const double x[], Integer nx, Integer nk,
            double *mean, double *var, double r[], double *stat, NagError *fail)
```

3 Description

The data consist of \(n \) observations \(x_i \), for \(i = 1, 2, \ldots, n \), from a time series.

The quantities calculated are:

(a) The sample mean

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}
\]

(b) The sample variance (for \(n \geq 2 \))

\[
s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(n - 1)}
\]

(c) The sample autocorrelation coefficients of lags \(k = 1, 2, \ldots, K \), where \(K \) is a user-specified maximum lag, and \(K < n, n > 1 \).

(d) The coefficient of lag \(k \) is defined as

\[
r_k = \frac{\sum_{i=1}^{n-k} (x_i - \bar{x})(x_{i+k} - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

(e) See page 496 et seq. of Box and Jenkins (1976) for further details.

(f) A test statistic defined as

\[
\text{stat} = n \sum_{k=1}^{K} r_k^2
\]

which can be used to test the hypothesis that the true autocorrelation function is identically zero.

If \(n \) is large and \(K \) is much smaller than \(n \), \(\text{stat} \) has a \(\chi^2 \) distribution under the hypothesis of a zero autocorrelation function. Values of \(\text{stat} \) in the upper tail of the distribution provide evidence against the hypothesis.

Section 8.2.2 of Box and Jenkins (1976) provides further details of the use of \(\text{stat} \).
4 References

5 Arguments
1: \(x[nx] \) – const double
 \(On \ entry: \) the time series, \(x_i \), for \(i = 1, 2, \ldots, n \).

2: \(nx \) – Integer
 \(On \ entry: \) the number of values, \(n \), in the time series.
 \(Constraint: \ nx > 1 \).

3: \(nk \) – Integer
 \(On \ entry: \) the number of lags, \(K \), for which the autocorrelations are required. The lags range from 1 to \(K \) and do not include zero.
 \(Constraint: 0 < nk < nx \).

4: \(\text{mean} \) – double *
 \(On \ exit: \) the sample mean of the input time series.

5: \(\text{var} \) – double *
 \(On \ exit: \) the sample variance of the input time series.

6: \(r[nk] \) – double
 \(On \ exit: \) the sample autocorrelation coefficient relating to lag \(k \), for \(k = 1, 2, \ldots, K \).

7: \(\text{stat} \) – double *
 \(On \ exit: \) the statistic used to test the hypothesis that the true autocorrelation function of the time series is identically zero.

8: \(\text{fail} \) – NagError *
 \(Input/Output \)
 The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LE
\(On \ entry, nx = \langle value \rangle \) while \(nk = \langle value \rangle \). These arguments must satisfy \(nx > nk \).

NE_INT_ARG_LE
\(On \ entry, nk = \langle value \rangle \).
\(Constraint: nk > 0 \).
\(On \ entry, nx = \langle value \rangle \).
\(Constraint: nx > 1 \).

NE_TIME_SERIES_IDEN
\(On \ entry, all \ values \ of x \ are \ practically \ identical, \ giving \ zero \ variance. \ In \ this \ case \ r \ and \ stat \ are \ undefined \ on \ exit.\)
7 Accuracy

The computations are believed to be stable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_tsa_auto_corr (g13abc) is approximately proportional to $nx \times nk$.

10 Example

In the example below, a set of 50 values of sunspot counts is used as input. The first 10 autocorrelations are computed.

10.1 Program Text

/* nag_tsa_auto_corr (g13abc) Example Program. */
/* Copyright 2014 Numerical Algorithms Group. */
/* Mark 2, 1991. */
/* Mark 8 revised, 2004. */
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg13.h>

int main(void)
{

 Integer exit_status = 0, i, nk, nx;
 NagError fail;
 double mean, *r = 0, stat, *x = 0, xv;

 INIT_FAIL(fail);

 printf("nag_tsa_auto_corr (g13abc) Example Program Results\n");
 /* Skip heading in data file */
 #ifdef _WIN32
 scanf_s("%*[\n]");
 #else
 scanf("%*[\n]");
 #endif
 #ifdef _WIN32
 scanf("%"NAG_IFMT" "%NAG_IFMT", &nx, &nk);
 #else
 scanf("%"NAG_IFMT" "%NAG_IFMT", &nx, &nk);
 #endif

 if (nk > 0 && nx > 1 && nk < nx)
 {
 if (!r = NAG_ALLOC(nk, double)) ||
 !(x = NAG_ALLOC(nx, double))
 {
 printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 }
 else
 }
{
 printf("Invalid nx or nk.\n");
 exit_status = 1;
 return exit_status;
}
for (i = 0; i < nx; ++i)
#ifdef _WIN32
 scanf_s("%lf", &x[i]);
#else
 scanf("%lf", &x[i]);
#endif
printf("\nThe first %2"NAG_IFMT" coefficients are required\n", nk);
/* nag_tsa_auto_corr (g13abc).
 * Sample autocorrelation function
 */
nag_tsa_auto_corr(x, nx, nk, &mean, &xv, r, &stat, &fail);
if (fail.code != NE_NOERROR)
{
 printf("Error from nag_tsa_auto_corr (g13abc).\n%s\n", fail.message);
 exit_status = 1;
 goto END;
}
printf("The input array has sample mean %12.4f\n", mean);
printf("The input array has sample variance %12.4f\n", xv);
printf("The sample autocorrelation coefficients are %n\n");
printf(" Lag Coeff\n");
for (i = 0; i < 10; ++i)
 printf("%6"NAG_IFMT"%10.4f\n", i+1, r[i]);
printf("\nThe value of stat is %12.4f\n", stat);
END:
NAG_FREE(r);
NAG_FREE(x);
return exit_status;
}

10.2 Program Data

nag_tsa_auto_corr (g13abc) Example Program Data
50 10
 5.0 11.0 16.0 23.0 36.0
 58.0 29.0 20.0 10.0 8.0
 3.0 0.0 0.0 2.0 11.0
 27.0 47.0 63.0 60.0 39.0
 28.0 26.0 22.0 11.0 21.0
 40.0 78.0 122.0 103.0 73.0
 47.0 35.0 11.0 5.0 16.0
 34.0 70.0 81.0 111.0 101.0
 73.0 40.0 20.0 16.0 5.0
 11.0 22.0 40.0 60.0 80.9

10.3 Program Results

nag_tsa_auto_corr (g13abc) Example Program Results

The first 10 coefficients are required
The input array has sample mean 37.4180
The input array has sample variance 1002.0301
The sample autocorrelation coefficients are

<table>
<thead>
<tr>
<th>Lag</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8004</td>
</tr>
<tr>
<td>2</td>
<td>0.4355</td>
</tr>
<tr>
<td>3</td>
<td>0.0328</td>
</tr>
<tr>
<td>4</td>
<td>-0.2835</td>
</tr>
<tr>
<td>5</td>
<td>-0.4505</td>
</tr>
<tr>
<td>6</td>
<td>-0.4242</td>
</tr>
<tr>
<td>7</td>
<td>-0.2419</td>
</tr>
</tbody>
</table>
The value of stat is 92.1231