NAG Library Function Document

nag_tsa_diff (g13aac)

1 Purpose

nag_tsa_diff (g13aac) carries out non-seasonal and seasonal differencing on a time series. Information which allows the original series to be reconstituted from the differenced series is also produced. This information is required in time series forecasting.

2 Specification

```c
#include <nag.h>
#include <nagg13.h>
void nag_tsa_diff (const double x[], Integer nx, Integer d, Integer ds,
                  Integer s, double xd[], Integer *nxd, NagError *fail)
```

3 Description

Let
\[r_d r_D r_s x_i \]

be the \(i\)th value of a time series \(x_i\), for \(i = 1, 2, \ldots, n\) after non-seasonal differencing of order \(d\) and seasonal differencing of order \(D\) (with period or seasonality \(s\)). In general,

\[
\begin{align*}
\nabla^d \nabla^D_s x_i &= \nabla^{d-1} \nabla^D_s x_{i+1} - \nabla^{d-1} \nabla^D_s x_i & & d > 0 \\
\nabla^d \nabla^D_s x_i &= \nabla^{d-1} \nabla^D_s x_{i+s} - \nabla^{d-1} \nabla^D_s x_i & & D > 0
\end{align*}
\]

Non-seasonal differencing up to the required order \(d\) is obtained using

\[
\begin{align*}
\nabla^1 x_i &= x_{i+1} - x_i & & \text{for } i = 1, 2, \ldots, (n - 1) \\
\nabla^2 x_i &= \nabla^1 x_{i+1} - \nabla^1 x_i & & \text{for } i = 1, 2, \ldots, (n - 2) \\
& & \vdots \\
\nabla^d x_i &= \nabla^{d-1} x_{i+1} - \nabla^{d-1} x_i & & \text{for } i = 1, 2, \ldots, (n - d)
\end{align*}
\]

Seasonal differencing up to the required order \(D\) is then obtained using

\[
\begin{align*}
\nabla^d \nabla^1_s x_i &= \nabla^d x_{i+s} - \nabla^d x_i & & \text{for } i = 1, 2, \ldots, (n - d - s) \\
\nabla^d \nabla^2_s x_i &= \nabla^d \nabla^1_s x_{i+s} - \nabla^d \nabla^1_s x_i & & \text{for } i = 1, 2, \ldots, (n - d - 2s) \\
& & \vdots \\
\nabla^d \nabla^D_s x_i &= \nabla^d \nabla^{D-1}_s x_{i+s} - \nabla^d \nabla^{D-1}_s x_i & & \text{for } i = 1, 2, \ldots, (n - d - D \times s)
\end{align*}
\]

Mathematically, the sequence in which the differencing operations are performed does not affect the final resulting series of \(m = n - d - D \times s\) values.

4 References

None.

5 Arguments

1. \(x[\text{nx}]\) – const double

 Input

 On entry: the undifferenced time series, \(x_i\), for \(i = 1, 2, \ldots, n\).
2: \(\text{nx} \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} \ n, \ the \ number \ of \ values \ in \ the \ undifferenced \ time \ series.
\text{Constraint:} \ nx > d + (ds \times s).

3: \(\text{d} \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} \ d, \ the \ order \ of \ non-seasonal \ differencing.
\text{Constraint:} \ d \geq 0.

4: \(\text{ds} \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} \ D, \ the \ order \ of \ seasonal \ differencing.
\text{Constraint:} \ ds \geq 0.

5: \(s \) – Integer \hspace{1cm} \text{Input}

\text{On entry:} \ s, \ the \ seasonality.

\text{Constraints:}
\begin{align*}
\text{if} \ ds > 0, & \quad s > 0; \\
\text{if} \ ds = 0, & \quad s \geq 0.
\end{align*}

6: \(\text{xd}[\text{nx}] \) – double \hspace{1cm} \text{Output}

\text{On exit:} \ the \ differenced \ values \ in \ elements \ 0 \ to \ \text{nxd} - 1, \ and \ reconstitution \ data \ in \ the \ remainder \ of \ the \ array.

7: \(\text{nxd} \) – Integer * \hspace{1cm} \text{Output}

\text{On exit:} \ the \ number \ of \ differenced \ values \ in \ the \ array \ \text{xd}.

8: \(\text{fail} \) – NagError * \hspace{1cm} \text{Input/Output}

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 \ Error Indicators and Warnings

\textbf{NE_ALLOC_FAIL}

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

\textbf{NE_BAD_PARAM}

On entry, argument \(\langle \text{value} \rangle \) had an illegal value.

\textbf{NE_INT}

On entry, \(\text{d} = \langle \text{value} \rangle \).
\text{Constraint:} \ d \geq 0.

On entry, \(\text{ds} = \langle \text{value} \rangle \).
\text{Constraint:} \ ds \geq 0.

On entry, \(s = \langle \text{value} \rangle \).
\text{Constraint:} \ s \geq 0.

\textbf{NE_INT_2}

On entry, \(\text{ds} = \langle \text{value} \rangle \).
\text{Constraint: if} \ s = 0, \ ds \leq 0.
On entry, \(nx = \langle\text{value}\rangle, d = \langle\text{value}\rangle, ds = \langle\text{value}\rangle \) and \(s = \langle\text{value}\rangle \).
Constraint: \(nx > d + (ds \times s) \).

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

The computations are believed to be stable.

Not applicable.

The time taken by nag_tsa_diff (g13aac) is approximately proportional to \((d + ds) \times nx\).

This example reads in a set of data consisting of 20 observations from a time series. Non-seasonal differencing of order 2 and seasonal differencing of order 1 (with seasonality of 4) are applied to the input data, giving an output array holding 14 differenced values and 6 values which can be used to reconstitute the output array.

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag_g13.h>

int main(void)
{
 /* Scalars */
 Integer exit_status, i, d, ds, s, nx, nxd;
 NagError fail;
 /* Arrays */
 double *x = 0, *xd = 0;

 INIT_FAIL(fail);

 exit_status = 0;
 printf("nag_tsa_diff (g13aac) Example Program Results\n");
/* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
#ifdef _WIN32
 scanf_s("%NAG_IFMT"NAG_IFMT"NAG_IFMT"NAG_IFMT"%*[\n]", &nx, &d,
 &ds, &s);
#else
 scanf("%NAG_IFMT"NAG_IFMT"NAG_IFMT"NAG_IFMT"%*[\n]", &nx, &d,
 &ds, &s);
#endif
if (nx > 0)
{
 /* Allocate memory */
 if (!(x = NAG_ALLOC(nx, double)) ||
 !(xd = NAG_ALLOC(nx, double)) ||
 { printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 for (i = 1; i <= nx; ++i)
#ifdef _WIN32
 scanf_s("%lf", &x[i-1]);
#else
 scanf("%lf", &x[i-1]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
 printf("\n");
 printf("Non-seasonal differencing of order %"NAG_IFMT"
 and seasonal differencing\norder %"NAG_IFMT"
 with seasonality %"NAG_IFMT" are applied\n", d, ds, s);
#ifdef _WIN32
 scanf_s("%NAG_IFMT"NAG_IFMT"NAG_IFMT"NAG_IFMT"%*[\n]", &nx, &d,
 &ds, &s);
#else
 scanf("%NAG_IFMT"NAG_IFMT"NAG_IFMT"NAG_IFMT"%*[\n]", &nx, &d,
 &ds, &s);
#endif
 if (nx > 0)
 {
 /* Allocate memory */
 if (!(x = NAG_ALLOC(nx, double)) ||
 !(xd = NAG_ALLOC(nx, double)) ||
 { printf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }
 for (i = 1; i <= nx; ++i)
#ifdef _WIN32
 scanf_s("%lf", &x[i-1]);
#else
 scanf("%lf", &x[i-1]);
#endif
#ifdef _WIN32
 scanf_s("%*[\n]");
#else
 scanf("%*[\n]");
#endif
 printf("\n");
 printf("Non-seasonal differencing of order %"NAG_IFMT"
 and seasonal differencing\nof order %"NAG_IFMT"
 with seasonality %"NAG_IFMT" are applied\n", d, ds, s);
 /* nag_tsa_diff (g13aac).
 * Univariate time series, seasonal and non-seasonal
 * differencing
 */
 nag_tsa_diff(x, nx, d, ds, s, xd, &nxd, &fail);
 if (fail.code != NE_NOERROR)
 { printf("Error from nag_tsa_diff (g13aac).\n%ss\n", fail.message);
 exit_status = 1;
 goto END;
 }
 printf("\n");
 printf("The output array holds %2"NAG_IFMT" values, of which the
 first %2"NAG_IFMT" are differenced values\n\n", nx, nxd);
 for (i = 1; i <= nx; ++i)
 { printf("%10.1f", xd[i-1]);
 if (i % 5 == 0 || i == nx)
 printf("\n");
 }
 }
END:
NAG_FREE(x);
NAG_FREE(xd);

return exit_status;
}

10.2 Program Data

nag_tsa_diff (g13aac) Example Program Data
20 2 1 4
120.0 108.0 98.0 118.0 135.0
131.0 118.0 125.0 121.0 100.0
82.0 82.0 89.0 88.0 86.0
96.0 108.0 110.0 99.0 105.0

10.3 Program Results

nag_tsa_diff (g13aac) Example Program Results

Non-seasonal differencing of order 2 and seasonal differencing of order 1 with seasonality 4 are applied.

The output array holds 20 values, of which the first 14 are differenced values

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-11</td>
<td>-10</td>
<td>-8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>-2</td>
<td>18</td>
<td>9</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>-5</td>
<td>-2</td>
<td>-12</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>-10</td>
<td>-13</td>
<td>17</td>
<td>6</td>
<td>105</td>
</tr>
</tbody>
</table>